
Li et al.: DeepAMO: A Multi-slice, Multi-view Anthropomorphic Model Observer for Visual Detection Tasks Performed on Volume Images  1 

  
Abstract—We have developed a deep learning-based 

anthropomorphic model observer (DeepAMO) for image 
quality evaluation of multi-orientation, multi-slice image 
sets with respect to a clinically realistic 3D defect detection 
task. The input to the DeepAMO is a composite image, 
typical of that used to view 3D volumes in clinical practice. 
The output is a rating value designed to mimic human 
observer’s defect detection performance. The main 
contributions of this paper are threefold. First, we propose 
a hypothetical model of the decision process of a reader 
performing a detection task using a 3D volume. Second, we 
propose a projection-based defect confirmation network 
architecture to confirm defect present in two different 
slicing orientations. Third, we propose a novel calibration 
method that ‘learns’ the underlying distribution of observer 
ratings from the human observer rating data (thus modeling 
inter- or intra- observer variability) using a Mixture Density 
Network. We implemented and evaluated the DeepAMO in 
the context of 99mTc-DMSA SPECT imaging. A human 
observer study was conducted, with two medical imaging 
physics graduate students serving as observers. A 𝟓	 × 	𝟐-
fold cross validation experiment was conducted to test the 
statistical equivalence in defect detection performance 
between the DeepAMO and the human observer. The 
results show that the DeepAMO’s and human observer’s 
performances on unseen images were statistically 
equivalent with a margin of difference (∆AUC) of 0.0426 at 
𝒑 < 𝟎. 𝟎𝟓,  using 288 training images. The results show that 
the DeepAMO has the potential to mimic human observer 
defect detection task performance in a clinically realistic 
diagnostic task.  
 
 

Index Terms—Deep learning, model observer, task-based 
image quality assessment.  
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I. INTRODUCTION 
FTEN, the quality of a medical image is measured in terms 
of physical properties of the image, such as image contrast, 

spatial resolution, and noise level [1]. Alternatively, fidelity-
based measures such as root mean squared error (RMSE), peak 
signal-to-noise ratio (PSNR) and structural similarity index 
(SSIM), which evaluate image quality in terms of similarity of 
the image with respect to truth, have been widely used in the 
medical imaging community. These measures are appealing 
because they are relatively easy to compute, have 
straightforward physical interpretations, and can provide 
objective quantitative measures of image quality. However, 
they are not directly related to the diagnostic task that will be 
performed with the images and thus may not be clinically 
relevant. To be clinically relevant, image quality should be 
assessed with respect to the task that will be performed [2-8]. 
Ideally, the observers would be drawn from the population of 
people performing the task, i.e., for medical images, a 
radiologist or nuclear medicine physician. However, in 
practice, especially in large-scale developmental research 
studies, the use of human observers (and especially physicians) 
can be too time-consuming, inconvenient and expensive. Thus, 
a great deal of effort has gone into the development of 
anthropomorphic model observers that predict human observer 
performance [9-12]. 

Task-based measures of image quality based on model 
observers has been advocated by a number of investigators over 
the years, starting from Harris [13], and including Hanson and 
Myers [14], Wager et al. [15], Judy et al. [16], and Myers et al. 
[9, 17]. However, despite their rigorous theoretical foundation, 
task-based measures are often not used as an image quality 
metric by researchers in the medical imaging community. This 
is partly due to the fact that (1) model observers typically 
require much more complicated computations than fidelity-
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based image quality metrics and (2) existing model observers 
are often not directly applicable to diagnostic tasks [18]. For 
example, as described below, common model observers are 
strictly valid only for signal-location-known (exactly and 
statistically) tasks. In addition, while these observers predict 
rankings of human observer performance, they often require the 
use of concepts such as internal noise to match the absolute 
performance of human observers. 
 Of the existing anthropomorphic observer models, the 
channelized Hotelling observer (CHO) has been the most 
widely used as substitute for human observers in signal-
location-known tasks in nuclear medicine imaging 
research[19]. The CHO has been shown to correlate well with 
human observer performance on signal-known-
exactly/background-known-exactly (SKE/BKE) tasks [20, 21], 
SKE-background known statistically (BKS) (e.g., lumpy 
backgrounds) tasks [22], and SKE-realistic anatomical 
backgrounds tasks [23-25]. However, in those tasks the 
observer is only asked to decide whether the defect is present or 
not at a specified location. A more clinically realistic detection 
task is the signal-known-statistically (SKS)/BKS task, where 
variability can be present in both the signal and background. 
Here, signal variability is present in the form of variations in 
signal/defect shape, size, orientation, or topology/texture or 
combinations of the above. Background variability can come 
from two sources: quantum noise and anatomical variability. 
Modeling the latter is important in order to model clinical task 
where patients can vary greatly in size, shape, uptake, etc. It is 
important to model these image features, especially in studies 
such as virtual clinical trials, in order to accurately model 
performance on images from patient populations.  For these 
clinically more realistic SKE/BKS and SKS/BKS tasks, there is 
evidence that rankings or ranking trends of human observers 
and the CHO are correlated for different noise levels [25, 26], 
reconstruction methods and phantom populations [27], imaging 
systems [28], compensation methods, and post-filter cutoff 
frequencies[29]. Scanning forms of the CHO can be applied for 
the clinically more realistic SKS/BKS tasks to analyze each 
location within a particular region of interest (ROI) as a 
potential defect site [30]. However, for SKS tasks, training the 
scanning CHO can be computationally expensive as it requires 
computing covariance matrices at every ROI location, which 
makes the scanning observers impractical for use in large-scale 
studies of 3D image volumes. 

In addition to the above limitations, existing model observers 
often predict rankings but not the absolute performance of 
human observers [31]. For imaging system optimization or 
comparison studies, this can be sufficient, but for other 
applications, such as selecting imaging time, administered 
activity or radiation dose, prediction of absolute performance 
measures is required [8]. Obtaining absolute agreement for 
these model observers typically is done with the addition of 
observer internal noise [31]. This requires a calibration process 
that is not generalizable across applications. Basically, the 
calibration process is a parameter search exercise where the 
goal is to find the value of an internal noise parameter that 
matches performance between the model and human observers. 

Note that the calibration process is often performed for one 
specific combination of signal (shape, size and orientation) and 
noise level, and it is unclear the degree to which the calibration 
generalizes to other situations. 
 Another gap between current anthropomorphic observers and 
the real clinical task is that current model observers have been 
largely designed for analyzing 2D images. By contrast, many 
modern clinical tasks require interpretation of 3D images. This 
often involves reviewing sequences of 2D slices in 3 orthogonal 
orientations (coronal, sagittal and transaxial). Existing multi- 
slice [32, 33] or 3D model observers[34-38] are either for SKE 
tasks only or single-orientation SKS tasks [32]. 

In this paper, we propose a novel deep learning-based 
anthropomorphic model observer (DeepAMO) that evaluates 
multi-orientation, multi-slice image sets to model the clinical 
diagnostic process of a radiologist or nuclear medicine 
physician in a clinically realistic 3D defect detection task. The 
DeepAMO was evaluated on a SKS/BKS tasks using a realistic 
anatomical background with variation in organ uptake and 
defect position (and thus orientation and shape). We also 
propose a novel calibration method that ‘learns’ the underlying 
distribution of the human observer rating values (i.e., the 
internal noise) using a Mixture Density Network. The entire 
network is trained using human observer rating values so that 
the output, when applied to an input image volume, is a rating 
value designed to mimic the performance of human observers. 
A human observer study was conducted using the volumetric 
display format routinely used at Boston Children’s Hospital 
(BCH) for clinical interpretation. Quantitative comparisons of 
the performance between the DeepAMO and human observer 
are provided in the results section.  

II. MATERIALS AND METHODS 
Image quality in this work was measured in terms of 

performance on the task of detecting renal functional defects in 
99mTc-DMSA SPECT. The images used were simulated based 
on an anthropomorphic digital phantom of 5-year-old (a 
common age in DMSA imaging). The phantom and simulation 
methods were previously described in Ref. [39]. The simulation 
modeled administered activities (and thus noise levels) based 
on the North America Consensus Guidelines[40]. Task 
performance was evaluated using both human observers and 
DeepAMO. Both of these observers produced a set of rating 
values for images where the true defect status was known. 
These rating values were analyzed using receiver operating 
characteristic (ROC) analysis methods [41]. The area under the 
curve (AUC) of the ROC analysis served as a figure of merit 
for task performance. 

A. Data Simulation 
The projection data for this study were generated using the 

Advanced Laboratory for Radiation Dosimetry Studies 
(ALRADS) UF NHANES-based phantom [42]. The pediatric 
phantom used was developed at the University of Florida based 
on demographic data from the CDC’s National Health and 
Nutrition Examination Survey (NHANES) data [43]. For this 
study, we used a 5-year-old male phantom with average girth 
and kidney size. The phantom was digitized using 0.1 cm cubic 
voxels. Activity uptake in the kidneys was modeled using data 
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from a single imaging time point (3 hours post injection). A 
dataset of 47 patients acquired at the BCH was used to estimate 
the means and standard deviations of kidney uptake in units of 
activity.  

The model previously described in [44, 45] was used to 
simulate defects in the cortical wall of the right kidney 
consisting of volumes of reduced uptake consistent with focal 
acute pyelonephritis. The defects were created at random 
locations (excluding the area close to the renal pelvis) along the 
cortical wall. Based on input from an experienced pediatric 
nuclear medicine specialist, we selected a defect volume of 0.5 
cm3 as a defect size that is clinically relevant for the 5-year-old. 
Using this model, we created four randomly located focal 
transmural renal defects at each of the following macro 
locations on the right kidney cortex: upper pole, lower pole and 
lateral. There was a total of 12 random locations for the defects 
generated in this study, modeling an SKS task. From the 
phantom, we simulated noise-free projection data for the renal 
cortex, medulla, pelvis, liver, spleen, and background 
(including all other organs), modeling the physics and 
acquisition parameters appropriate for 99mTc renal SPECT. The 
renal activity and relative activity concentrations for structures 
inside the kidney (the renal cortex, medulla, and pelvis) were 
randomly sampled from truncated Gaussian distributions with 
the means, standard deviations, minima, and maxima derived 
from 47 sets of patient data acquired at BCH. Parameters for the 
distributions can be found in [45]. Each individual organ 
projection was scaled by the product of administered activity 
(AA), acquisition duration, and scanner sensitivity. The 
projections were generated using an analytic projection code 
that modeled attenuation, spatially varying collimator-to-
detector response [46], and object-dependent scatter [47]. The 
code has been previously validated by comparison to Monte 
Carlo and experimental projection data for imaging of a variety 
of radionuclides [48-56]. In this study the projections were 
simulated to model a Siemens low-energy, ultra-high-
resolution (LEUHR) collimator used routinely at BCH for 
pediatric DMSA studies.  Each individual organ projection 
dataset was generated at 120 projection views over a 360° body-
contouring orbit with a 0.1-cm projection bin size and then 
collapsed to a bin size of 0.2 cm. A model of the patient bed 
obtained from a CT scan of the bed of a Siemens Symbia 
SPECT/CT system was added to the attenuation map of each 
computational phantom.  Noise-free projection images of the 
entire phantom were obtained by summing the individual sets 
of scaled organ projections. Noisy projections were created by 
simulating Poisson noise using a Poisson pseudo-random 
generator. 
 A total of 384 projection images were thus generated, 
comprised of 16 uptake realizations × 12 defect locations × 2 
defect statuses (present or absent). The mean (noise-free) 
activity distribution was statistically independent for each of 
these 384 projection images since the kidney uptake and cortex 
to medulla plus pelvis activity concentration ratios were 
randomly sampled. 
 We followed the clinical reconstruction protocol routinely 
used by BCH in their clinical practice. Projection images were 
reconstructed using the OS-EM iterative reconstruction 
algorithm with compensation for the geometric collimator-

detector response and post-filtered with a Gaussian filter with a 
FWHM of 5 mm. The reconstructed images were then 
interpolated and formatted to match the volumetric image 
display used at the BCH. In this display, 10 coronal, 20 sagittal 
and 18 transaxial images with sizes of 96 ´ 96 pixels were 

generated. These composite images were used for training and 
testing of the proposed model observer and the human 
observers. Windowing was used to map the image pixel values 
to a range between 0 to 255. A sample of BCH’s volumetric 
display image is shown in Fig.  1.  

B. Proposed Model Observer: Theory 
The DeepAMO is designed based on a hypothetical model of 

the image interpretation process of a human observer. We 
hypothesize that when an observer interprets an image, they 
would first scan over the slices to look for any suspicious 
abnormalities in single slices. If a defect is suspected to be 
present in one slice (of a particular orientation), they would then 
confirm that on adjacent slices. If positive, the observer would 
then confirm that defect is present using slices in the other two 
orientations. We suppose that the observer would have more 
confidence in the presence of a defect if it is found in at least 
one other orientation. Thus, we propose a two-stage model 
observer to implement this decision-making process. 
Specifically, we propose to use a segmentation network as an 
abnormality search engine to perform the “first scan” over the 
slices. In that process, a nuclear medicine physician would 
normally consider adjacent slices when scanning for a defect in 
a particular slice. Thus, we propose to use a three-slice set (triad) 
of adjacent slices as the input to the segmentation network.  

Within the network, the input image is first subdivided into 
multiple triads. Each triad is subsequently sent to a 
segmentation network to generate a segmentation mask, serving 
as a “first scan” over the slices in that triad. The segmentation 
masks along each orientation are then summed to form a 
summed segmentation mask in order to enhance the defect 
signal(s) that is/are present in that orientation. The summed 
segmentation masks are sent to a defect confirmation network 
to generate a low-dimensional feature vector. At last, a set 
feature vectors and the corresponding human observer rating 
values are sent to a Mixture Density Network to learn the 

 
Fig. 1. A sample 48-slice image shown in the volumetric display format 
routinely used in clinical practice at the Boston Children’s Hospital. 
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mapping between them, calibrating the DeepAMO to human 
performance.  

C. Proposed Model Observer: Architecture 
A schematic of the proposed DeepAMO is shown in Fig. 2. 

The input to the segmentation network was the same set of 
slices used in the previously described volume display used in 
clinical practice, which consists of multiple slices in each of the 
three orientations: coronal, sagittal, and transaxial. 
Mathematically, the slice, 𝑆*+ (𝑚, 𝑛), and input composite image, 
𝐼(𝑚, 𝑛, 𝑞), are related as follows 

       𝐼3𝑚, 𝑛, 𝑞*+ 4 = 𝑆*+ (𝑚, 𝑛).            (1) 
In (1), 𝑞*+  is the index number for the 𝑖th slice in the slicing 
direction	𝑘 ∈ (𝑐, 𝑠, 𝑡) and 𝑚, 𝑛, and 𝑞 are pixel indices for the 
x-, y-, and z-axis, respectively. 

For each orientation, N-2 (N = the number of slices in each 
orientation) triads are generated: the first and last slices cannot 
act as the central slice for a triad. 

The output segmentation mask (SM) of each triad is a 2D 
binary mask of pixels thought to be in the defect. The SMs 
along each orientation are summed to form a summed 
segmentation mask (SSM) in order to enhance the defect 
signal(s) that is/are present in that orientation.  
                           𝑆𝑀*

=(𝑚, 𝑛) = 𝑓 ?𝑇*
=(𝑚, 𝑛, 𝑞)A. (3) 

                        𝑆𝑆𝑀*(𝑚, 𝑛) = ∑ 𝑆𝑀*
=(𝑚, 𝑛).CD

=EF  (4) 

with 𝑗  the triad number and 𝑘  the slicing direction. 
𝑇*
=(𝑚, 𝑛, 𝑞)and 𝑛*  represent the 𝑗 th triad and	the number of 

triads in slicing direction 𝑘, respectively. Here, 𝑓(∙) denotes the 
segmentation network. 

We propose to implement the process of confirming defect 
presence in other slicing directions by projecting and 
comparing defect information from different slicing directions, 
through a defect confirmation network. Specifically, this is 
implemented by projecting (i.e., summing) each 𝑆𝑆𝑀* 
vertically and horizontally and calculating the dot products 
between the resulting horizontal projections (HP) and vertical 
projections (VP) from different slicing directions. The HPs and 
VPs are derived as follows: 
                         𝐻𝑃*(𝑛) = ∑ 𝑆𝑆𝑀*(𝑚, 𝑛)KLF

MEN , and (5) 
                         𝑉𝑃*(𝑚) = ∑ 𝑆𝑆𝑀*(𝑚, 𝑛),PLF

CEN  (6) 
with M and N being the number of pixels in x- and y-axis, 
respectively.  

The projection is constructed so that the projections from the 
different slicing directions are along the same direction in space. 
To understand this, consider that any two views always share a 
common axis, and by projecting the two views onto this 
common axis, we can confirm information about defect location 
that is compatible. For example, consider an L-shape object in 
a 3D space (Fig. 3). By projecting the sagittal and transaxial 
views vertically, we get two 1D vectors that both contain 
information about the object’s maximum length along the x axis. 
If the dot product between the two 1D vectors is large, then the 
object is present at the same location in that direction for both 
slicing directions. Likewise, we can confirm the object’s 
location along the other two directions via the same projection 

 𝑇*
=(𝑚, 𝑛, 𝑞) = Q𝑆*+LF(𝑚, 𝑛), 𝑆*+ (𝑚, 𝑛), 𝑆*+RF(𝑚, 𝑛)S,  

	𝑖 ∈ [0,𝑁], 𝑗 ∈ [1,𝑁 − 1] 
        
(2) 

 𝑇*
=(𝑚, 𝑛, 𝑞) = Q𝑆*+LF(𝑚, 𝑛), 𝑆*+ (𝑚, 𝑛), 𝑆*+RF(𝑚, 𝑛)S  

	𝑖 ∈ [0,𝑁], 𝑗 ∈ [1,𝑁 − 1]. 
        
(2) 

 

  
Fig. 2. A schematic of the proposed model observer: DeepAMO. 
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and dot product operations. This process yields 3 scalar values, 
representing the defect agreement along the x, y, z-axis, 
respectively. We named these 3 scalar values as defect 
confirmation (DC) scalars. They are derived from the HPs and 
VPs from different slicing directions as follows 

𝐷𝐶\] = 𝐻𝑃\(𝑛) ∙ 𝑉𝑃](𝑚),                   (7) 
𝐷𝐶\^ = 𝐻𝑃 (𝑛) ∙ 𝑉𝑃\(𝑚),	and               (8) 
𝐷𝐶]^ = 𝑉𝑃 (𝑚) ∙ 𝑉𝑃](𝑚).	                   (9) 

The DC scalers are concatenated with the total volume of the 
defect (TVD) seen in each slicing direction to form a single 
feature vector. The TVD from each slicing direction is 
computed as follows 

 
𝑇𝑉𝐷* = _ _𝑆𝑆𝑀*(𝑚, 𝑛).

PLF

CEN

KLF

MEN

 
(10) 

The resulting 6-element concatenated feature vector is then 
sent to a Mixture Density Network (MDN) [57] to generate the 
rating (test statistic) value. The dense layers in the MDN are 
meant to model the process of a human making the final 
decision using combined information from the different 
directions. 

D. Calibration to human observer via Mixture Density 
Network 

For defect detection tasks, the observer performance is 
usually measured by the AUC of the ROC analysis which 
ultimately depends on the underlying distribution of the rating 
values given by the observer. Thus, for the purposes of 
replicating an observer’s AUC score, we propose to directly 
learn the distribution of the rating values of that observer. We 
hypothesize that more training and testing samples would help 
better capture the underlying rating value’s distribution. 
However, demonstrating the equivalence of the distributions is 
a task requiring a large number of rating values. In addition, it 
is unclear what level of agreement between the true and 
modeled distribution is required. Thus, we are focusing in this 
work on verifying that the model observer can replicate the 
AUC values of the human observers.  

A mixture density network (MDN) was chosen for the task 
of turning the input feature vector into a rating value in order to 
model the fact that a human observer will give a different rating 
value for the same input image. The MDN provides parameters 
of a distribution, which can then be sampled to provide multiple, 
continuously valued ratings from a single set of input feature 
vectors. This can be useful during testing of the DeepAMO to 
reduce sampling error. 

Typically, an MDN learns an entire probability distribution 
for the output by modeling the conditional probability 
distribution of the target data conditioned on the input data. In 
our case, the desired conditional probability distribution is  
𝑃(𝑟|𝑿), where is 𝑿 = [𝑥F…𝑥e]	a 6-element feature vector and 
𝑟 is a (continuous) human observer rating value for a given 
input feature vector. For the purpose of modeling any arbitrary 
probability distribution, the MDN uses a Gaussian mixture 
model as the conditional probability density function, which 
can be represented as a linear combination of kernel functions 
in the form  

 
𝑃3𝑟f𝑿4 =_𝜋+3𝑿4

M

+EF

𝜙+3𝑟f𝑿4. 
(11) 

where 𝑚  is the number of components in the mixture and 
𝜋+3𝑿4s are the mixture coefficients for the kernel functions, 
which sum up to 1. The 𝜋+3𝑿4s are derived straight from the 
output of the MDN and are converted to probabilities as follows  

 𝜋+3𝑿4 =
𝜋+

∑ 𝜋+M
+EF

. (12) 

with 𝜋+ the output from the last dense layer, as shown in Fig. 3. 
The kernel functions, Q𝜙+3𝑟f𝑿4S, are in the form of Gaussian 
distributions 

 
𝜙+3𝑟f𝑿4 =

1
𝜎+(𝑿)√2𝜋

expo−
?𝑟 − 𝜇+3𝑿4A

q

2𝜎+3𝑿4
q r. 

(13) 

 
Fig. 3. An illustration of the process of confirming the defect from different views using projection and dot product in 3D space. 
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where 𝜎+(𝑿)  and 𝜇+3𝑿4 are the estimated standard deviation 
and mean for the input feature vector 𝑿 and they come straight 
from the output of the last dense layer. Note that the Q𝜋+3𝑿4Sis 
a function of 𝑿. So, the	Q𝜋+3𝑿4S	can also be regarded as prior 
probabilities of the target data. 

In training, the loss is computed using the human observer 
rating value, 	𝑟 stu , and the predicted mixture distribution 
𝑃3𝑟f𝑿4 from the MDN as follows 

 𝐿 = 	−𝑙𝑜𝑔𝑃3𝑟 stuf𝑿4. (14) 
 In testing, a rating value is predicted by first non-uniformly 
sampling the mixing coefficients and then randomly sampling 
from the Gaussian distribution corresponding to that sampled 
mixing coefficient with its corresponding mean and standard 
deviation.  

E. DeepAMO Performance on Unseen Images 
To estimate the number of images needed to train the 

DeepAMO, we used simulated feature vectors and rating values 
to train and test the MDN with the goal being to sufficiently 
match the distribution and AUC values between the proposed 
model and human observer. We assumed the elements of the 
feature vectors and the rating values follow a (unimodal or 
multi-modal) Gaussian distribution. 

The feature vectors were simulated by first generating values 
for the 𝑇𝑉𝐷*  , one for each orientation. Each 𝑇𝑉𝐷* was 
assumed to be mutually independent and was generated by 
sampling from independent Gaussian distributions. The 
sampled 𝑇𝑉𝐷*  values were then used to calculate the means 
and standard deviations of the DC scalars, which were also 
assumed to follow a Gaussian distribution. 

𝜇\] = 	𝑇𝑉𝐷\ × 𝑇𝑉𝐷]                       (15) 
𝜎\] = 	

z{|
}
	                                       (16) 

𝜇\^ = 	𝑇𝑉𝐷\ × 𝑇𝑉𝐷^                       (17) 
𝜎\] = 	

z{|
}

                                           (18) 
𝜇]^ =	𝑇𝑉𝐷] × 𝑇𝑉𝐷^                       (19) 
𝜎]^ = 	

z|~
}

                                           (20) 
The rating values of each feature vector were sampled from 

an assumed multi- or uni- modal Gaussian distributions. The 
distribution parameters for these simulated rating values were 
derived qualitatively from distributions of rating values from 
human observer studies. The means and standard deviations of 
these assumed Gaussian distributions are shown in Table I. For 
each feature vector, we then sampled N rating values from the 
assumed distribution to simulate the appropriate level of inter- 
or intra- observer variability in the data. Specifically, in this 
work, we sampled 2 rating values for each feature vector. So, 
there were 15,000 (2,500 x 3 feature vector types x 2 repeated 
samples) feature vectors/rating values in total for the case that 
had 2,500 samples/feature vector type. 
 In the simulation experiment, we generated 3 types of feature 
vectors for each class (defect-present and defect-absent): 
definitely-present, equivocal, and definitely-absent, reflecting 
different levels of user confidence in making the decision. For 
example, the feature vectors that belong to the definitely-
present type in the defect-present class were generated by 
sampling 3 large values for the 3 𝑇𝑉𝐷*s, modeling a high level 
of success of the segmentation network in detecting the defect 

in slices from all 3 orientations.  The other two types (equivocal 
and definitely-absent, respectively) contained 2 and 1 large 
values (assigned randomly to any of the three orientations) in 
the 𝑇𝑉𝐷*s to simulate different degrees of success in detecting 
the defect in the three orientations.  
 

Table I. Summary of distribution parameters for the simulated rating values 
Defect-present feature 

vector type Definitely-yes Not-sure Definitely-no 

Rating value means 7 10 2 4 -3 
Standard deviation 1.2 0.2 1.2 1.2 0.2 
Component weight 0.5 0.5 0.5 0.5 1 

       
Defect-absent feature 

vector type Definitely-yes Not-sure Definitely-no 

Rating value means -10 -8 -2 -4 2 5 
Standard deviation 0.2 1.2 0.7 1.2 0.5 0.8 
Component weight 0.5 0.5 0.5 0.5 0.5 0.5 

F. Training and Testing of DeepAMO 
The proposed model observer was trained in two stages. First, 

the segmentation network was trained given the ground-truth 
defect segmentation masks. Next, the MDN was trained using 
the output from the trained segmentation network and the 
human observer rating values.  
 The segmentation network was trained with triad images and 
their corresponding binary defect segmentation labels. Since 
each defect only contained about 0.5% of the kidney cortex 
volume, the number of defect-present triads is much smaller 
than the defect-absent ones, making this a highly imbalanced 

  
    Fig. 4. Segmentation network architecture used in this study 
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dataset. Thus, we adopted data augmentation on the defect-
present triads to balance the training data. We enriched the data 
by forming an additional seven sets of raw images and their 
labels by rotating each original defect-present triad image by 90, 
180, and 270 degrees and flipping them and the original dataset 
upside down. The exponential logarithmic loss in [58] was 
adopted to emphasize segmentation of small structures with the 
best-performing weights (𝜔\s�]] = 0.2 and 𝜔�+\u = 0.8).  

For the segmentation network, we adopted a shallow version 
of the U-Net [59]. We used a shallow (depth) network due to 
the relatively small amount of training data available in this 
study; a deeper network might be needed when the number of 
signal and anatomical variations increases, as they will when 
applied to a larger population of phantoms. Gaussian noise with 
a standard deviation of 1.0 was added to the renormalized input 
image (ranges 0-255) to prevent overfitting. We searched for 
the optimal network capacity (depth) for the segmentation 
network. There was a tradeoff between producing the highest 
Dice score and using the smallest number of parameters. 
However, it was observed that there was a relatively small 
increase in Dice score with increased number of parameters in 
the tested network architectures, and the Dice scores were all 
reasonably high. So, we adopted the network architecture that 
had the smallest number of parameters and yet gave a 
reasonably high Dice score (0.97). The train and test dataset had 
12,288 and 3,072 triads, respectively. Data augmentation was 
done on-the-fly. We used an Adam[60] optimizer with a 
learning rate of 0.001 and a batch size of 200.  The training took 
about 12 hours on a single Tesla K40 GPU.  

For the MDN, the number of mixtures was chosen by visually 
inspecting the distribution of the target human observer’s rating 
values. The number of mixtures was selected to be equal or 
greater than the number of modes observed in the distribution 
of the observer’s rating values.  

G. Human Observer Study 
 The same image display format shown in Fig. 1 was used 
in the human and model observer studies. A sample display of 
the human observer GUI is shown in Fig. 5. In the study, the 
observer was asked to rate their confidence that a defect was 
present on a continuous scale ranging between 1 to 5 (later 
mapped to -10 to 10), with the highest number representing the 
greatest confidence that a defect was present. To familiarize 
themselves with the display program and the nature of the 
clinical defect detection task, all observers participated in an 
initial training session comprised of 24 images. In the training 
session, phantom images of the kidney cortex were provided as 
ground truth to the observers once their rating value was 
recorded. Additional training was done, as described below. 

Rating values from the training study were not used in training 
the network. 

 Two senior Ph.D. students participated in the human 
observer study. A total of 384 of the composite images 
described in section A were used. To simulate an SKS detection 
task, the train and test datasets were created without requiring a 
balance of defect locations. Thus, the test dataset could contain 
defect locations that were not present in the initial training 
dataset. The images were divided into an initial training set and 
three test blocks. The block layout for each observer is shown 
in Table II. In each test block, a refresher set of 24 images was 
provided to refresh the observer’s memory about the task. A 
total of 288 rating values was collected from each observer.  

Table II. Summary of human observer study block partition 

Session  
Initial 

training 
images 

Blocks Image/block Total 
images 

  24 1 24 training 24 
1 0 1 24 training/96 test 120 
2 0 1 24 training/96 test 120 
3 0 1 24 training/96 test 384 

H. Equivalence Hypothesis testing 
 An equivalence statistical hypothesis test [61] was conducted 
to test whether the performance (as measured by the AUC) of 
the human observer and the proposed model observer is 

statically equivalent on a defect detection task. The null 
hypothesis and alternative hypothesis are expressed as follows: 

 𝐻N: |𝐴𝑈𝐶�� − 𝐴𝑈𝐶K�| = 𝛿 and 
𝐻F: |𝐴𝑈𝐶�� − 𝐴𝑈𝐶K�| < 𝛿. 

(21) 

where 𝐴𝑈𝐶��  and 𝐴𝑈𝐶K�, respectively, are the AUC values 
for the human and proposed model observer; 𝛿 is a threshold 
for an important difference (margin of difference) between 
𝐴𝑈𝐶�� and 𝐴𝑈𝐶K�. The difference parameter was used as it is 
very difficult, if not impossible, to show statistically that two 
quantities are exactly equal. In addition, small differences are 
not practically important. The difference parameter was 
prespecified and is a determinant of sample size: in order to 
prove better equivalence (smaller 𝛿), a larger sample size is 
required. In order to reject the null hypothesis, the confidence 
intervals of the difference of the AUCs must lie within the 
interval defined by the margin of difference parameter, as 
described in [61] and illustrated in Fig. 6. 

In order to calculate the confidence intervals for the 
difference in the AUCs (∆AUC), we conducted a 5 ´ 2-fold 

 
Fig. 6. A pictorial illustration of the rejectable and unrejectable case in 
equivalence hypothesis testing. 

 

 
Fig. 5. A sample image of the GUI used in the human observer study 
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cross validation experiment using data generated by the two 
human observers. A total of 576 rating values (288 images ´ 2 
observers) were used in training and testing of the proposed 
model observer. The data was partitioned randomly for each of 
the five trials, and a 50-50 train-to-test fraction was adopted. 
Within each trial, the train and test data were switched between 
the 1st and 2nd fold. We used a 50-50 split strategy to divide the 
data, as we assumed that the number of images in the test 
dataset should not be too small otherwise the distribution of 
rating values produced would be too coarse to represent the 
observer’s true performance, thus resulting in unfair AUC 
comparisons. However, we have not investigated whether the 
50-50 splitting is optimal.  

III. RESULTS 
A. DeepAMO on Simulated Data 

The results (Fig. 7) show the degree of similarity between the 
histograms (distributions) of the simulated test data (simulated 
unseen data); the degree of similarity increases as the total 
number of samples increases, indicating that the MDN is 
capable of handling complex distributions of observer’s rating 
values. This result agrees with the hypothesis that the MDN 
requires a minimum amount of training data in order to learn 
the underlying behavior of the observer on unseen data. Here, 
we assume that the underlying behavior of the observer is 
encoded in the distribution of that observer’s rating values 
(training data).  

The results also demonstrate that there is a tradeoff between 
∆AUC and the total number of samples in the dataset. 
Bootstrapping was used to calculate the non-parametric 
confidence intervals on the ∆AUC. The ∆AUCs and 95% 
confidence intervals on the ∆AUCs are summarized in Table 
III. The results show that the 100, 500, and 2,500 
samples/feature vector type cases had decreasing widths of the 
confidence intervals of ∆AUC, indicating that more samples are 
needed to demonstrate greater equivalence (smaller	𝛿) between 
the human and proposed model observer. The data also suggest 
that training set size is an important parameter in determining 
the bound of the 95% confidence interval on the ∆AUCs. 

 

B. DeepAMO Test Results (stage II) 
 For stage I, the highest dice score achieved on the validation 
data for the best segmentation network was 0.975. The 

validation was done on a balanced dataset with 50% of the 
triads containing a defect. 

For stage II, The AUC values for the human observers and 
the corresponding DeepAMOs for the 5 ´ 2-fold cross 
validation experiment are summarized in Table IV. The mean 
and standard deviation of the ∆AUC were 0.03 and 0.0204, 
respectively. The 95% confidence interval for the ∆AUC was 
[-0.0174, 0.0426], under the assumption that ∆AUC was 
normally distributed. The results of the study show that the null 
hypothesis with a margin of difference (𝛿) greater than 0.0426 
can be rejected at a confidence level of 95%, with this training 
set comprised of 288 samples. The histograms of the rating 
values from the human observers and the DeepAMOs for the 5 
´ 2-fold cross validation experiment are shown in Fig. 8. The 
AUC value is given at the top of each plot in that figure. The 
distributions of the rating values for the human and model 
observer are qualitatively similar. 

Table IV. Summary of stage II training results 

 
1st fold 2nd fold 

   

Trial
# 

AUC 
HO 

AUC 
Deep
AMO 

AUC 
HO 

AUC 
Deep
AMO 

∆AUC 
1st fold 

∆AUC 
2nd 
fold 

Mean 
∆AUC 
per trial 

1 0.829 0.79 0.797 0.75 0.039 0.05 0.045 

2 0.814 0.77 0.816 0.78 0.044 0.036 0.04 

3 0.814 0.82 0.815 0.77 -0.01 0.045 0.018 

4 0.82 0.77 0.809 0.8 0.046 0.007 0.027 

5 0.826 0.82 0.806 0.77 0.008 0.035 0.022 

IV. CONCLUSIONS 
We propose a general framework for using deep convolution 

neural networks as an anthropomorphic model observer for the 
task of interpreting 3D image volumes and reproducing human 

Table III. Summary of simulation results 

Number of 
samples per 

feature 
vector type 

AUC of 
DeepAMO 

on 
simulated 
test data 

AUC of 
simulated 
test data 
(ground 

truth) 

∆AUC 95% C.I. 
on ∆AUC 

C.I. 
width 

100 0.773 0.769 0.004 [-0.0502, 
0.0477] 0.0979 

500 0.760 0.776 -0.015 [ -0.0352, 
0.0261] 0.0613 

2500 0.768 0.767 0.001 [ -0.0074, 
0.0089] 0.0163 

 
Fig. 7. Plots of histograms of the rating values of the simulated feature 
vectors (test data only) and predicted rating values on these data given by 
the DeepAMO.  The plots show the class 0 and 1(defect present and 
absent, respectively) as well as the calculated AUC value. 
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observer performance. We applied this framework in the 
context of a renal functional defect detection task in nuclear 
medicine imaging using realistic simulated images. The results 
show that the proposed model observer and human observer’s 
performance on unseen images can be equivalent with respect 
to a margin of difference in the AUC (∆AUC) of 0.0426 at 𝑝 <
0.05, for a training set of 288 samples. In addition, the results 
from the simulation experiment demonstrate that the proposed 
model observer is capable of precisely replicating a human 
observer’s task performance on unseen data, as measured by the 
∆AUC. The proposed framework could be readily adapted to 
model human observer performance on detection tasks for other 
imaging modalities such as PET, CT or MRI. 
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