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These notes give a short description of Mean Field Theory and focus on applying it to
the Ising model for image. These notes assume you’re familiar with basic probability and
graphical models.

1 Mean Field Theory

The idea of the mean field theory approximation method is to use an approximating distribu-
tion Q(.) to approximate the target distribution when the target distribution is intractable.
So that we can obtain estimates such as marginal distributions on certain random variable(s)
in the network or MAP estimator on the states of the random variables in the network. The
approximating distribution usually is a distribution over a set of independent nodes but
there could be structures/dependencies among the nodes. The later is so-called structured
mean field and the dependencies should be defined at the beginning. Often, when the target
full joint distribution is intractable, we can use the MFT approximation method to find an
approximating distribution that’s close to the target distribution and compute estimates on
it. For the Ising model, we are looking for an approximating distribution Q(S) that’s close
to P (S|I)

1.1 Free energy and approximating distribution

Q(S) is the approximating distribution. Free energy is defined as follows:

FMFT (b) =
∑
x

∑
S(x)∈{0,1}

(S(x)− I(x))2qx(S(x))+

λ
∑
x

∑
y∈Nhb(x)

∑
S(x)∈{0,1},S(y)∈{0,1}

(S(x)−S(y))2qx(S(x))qy(S(y))+
∑
x

∑
S(x)∈{0,1}

qx(S(x))logqx(S(x))

(1)

1.2 Kullback-Leibler divergence

To explain how the K-L divergence can measure the similarity between P (.) and Q(.), we
need to write down the general form of K-L divergence:

KL(Q,P ) =
∑
x

q(x)ln
q(x)

p(x)
+
∑
i

λici(q)

1



where ci(q) =
∑

xi
qi(xi) − 1 = 0 As we can see from the natural log term above that the

K-L divergence measures the difference between the two distributions (only when q(x)=p(x)
the natural log term =0 otherwise it will contribute to the total sum) and hence we need to
minimize it to find the optimal distribution. In the Ising model, we have the K-L divergence
written as follows:

KL(Q,P ) = FMFT (q) + logZ

1.3 Update equations for the Ising model

The update equation is for the steepest descent algorithm qt+1
x = qtx − δ

∂KL(Q,P )
∂qx

qtx and in
order to derive the gradient term, we’d better clean up the free energy term first by letting
qx(S(x) = 1) = qx and qx(S(x) = 0) = 1− qx/ Then, the free energy term becomes:

FMFT (b) =
∑
x

{(1− I(x))2qx + I(x)2(1− qx)}

+ λ
∑
x

∑
y∈Nbh(x)

{qx(1− qy) + (1− qx)qy}+
∑
x

{qxlogqx + (1− qx)log(1− qx)} (2)

And,

∂KL(Q,P )

∂qx
=

∑
x

{(1−I(x))2−I(x)2}+λ
∑
x

∑
y∈Nbh(x)

{(1−qy)−qy}+
∑
x

{logqx−log(1−qx)}

Once we have the gradient we can then plug it in the update equation above to obtain qt+1
x .

We will need to do this for all values that the node X can take, namely, qt+1
x (S(x) = 1) and

qt+1
x (S(x) = 0). The choice of δ is very important for this algorithm.
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