Markov random fields, the Ising model, and Gibbs
sampling

Ye Li

These notes give a short description of Markov Random Fields, the Ising model for
images, and an introduction to Gibbs Markov Chain Monte Carlo (MCMC) in the context
of image. These notes assume you're familiar with basic probability and graphical models.

1 Markov Random Field

MRF definition: A Markov Random Field (MRF) or undirected graphical model is a graph-
ical model of a set of undirected random variables having a Markov property, i.e., the con-
ditional distribution of a random variable depends only on its neighbors. The graphical
model is consisted of undirected edges(encodes conditional dependencies), nodes (random
variables), and observed data. We can model the MRF by a posterior conditional distri-
bution, which is a Gibbs distribution (according to the Hammersley-Clifford theorem), by
specifying an energy function. The energy function has two terms in it: 1) unary potential
and 2) pairwise potential. The unary potential term solely models the relation between
the observed data point and its label and the pairwise potential then models the relation
between the label of interest and the labels neighboring it. For example, in a 2-D image
the observed data can be the pixel values and the nodes can be the labels associated with
each pixel value. To find the the posterior conditional distribution,P(label|observedData),
we will need to use sampling techniques such as Gibbs sampling as exact inference on MRF
is usually hard because the graph is not a tree and so we can’t use any of the sum-pushing
tricks for the sum-product algorithm. In the energy function of the Gibbs distribution, the
pairwise potential term can include prior assumptions about the local context of the labels
of the nodes to impose the neighboring pixels to have similar labels.

2 The Ising model

The Ising model is specified by a Gibbs distribution P(S|I) = —exp(—E(S;I)) where the
energy E(S;I) can be expressed by:

E(S;D=) (S@) —I)?+A)_ > (Sx)-5@)

x & yeNbh(z)

Here, Nbh(z) denotes the set of pixel indices neighboring x, S(x) € 0,1 (states), and I(x) €
[0,1] (the image).



The Ising model captures spatial context. From the second term of the energy function,
we can see that it punishes differences between neighbouring nodes, forcing that the solution
to be smooth in most regions, but in many cases when we are doing inference with this model
we would like to keep certain structures. For example in an edge detection task, we would
certainly want to keep the edges and so the edges should not be punished too harshly. The
extend of this punishment is controlled by A, which weights the importance of the second
term relative to the first. The task of the second term (the pairwise potential term) can
actually be understood to force pixels to have the same label and it only operates on pixels
that are neighbors of x. This follows the nature of a typical image, that pixels nearby tend
to have the same label or context. Thus this model helps capture/distinguish context of an
image spatially.

From the posterior, we can calculate the likelihood and prior by this relation: P(S|I) o

P(I|S)P(S). We can find the likelihood distribution and the prior by dividing posterior as
follows (Zy x Zy = Z):
The likelihood distribution:

The prior distribution:
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3 Gibbs sampling

3.1 Gibbs sampler on the Ising model

For a 1-D Ising model, we'll use S to represent the set {Si,...S,} for labels of observed
data and I to represent the set {I,...1,} for observed data. We have the target distribution
P(S|I) and now we would like to design a Gibbs sampling algorithm to generate samples
approximately from the target distribution. First we need to choose some random values to
initiate S° (the supper script indicates iteration). After initialization we now need to move
on and do the first iteration. We have to draw the n different S’s for S separately. So we
first draw S; from P(S5|S3,...59,I), while keeping S to SY fixed, given I. Then we draw
Sy from P(S,]S7,55...52 1), given the newly sampled S, SO to Sg , and I. For S} to be
precise, we draw Sz from P(S5|S],53,5Y...89. 1), given the newly sampled 57,55, S? to S°
from the previous iteration (initialization) , and I. We can generalize it to Sy,...S,, but now
the question is how do we actually draw sample (states; 1 or 0, edge or non-edge) from the
conditional distribution.

To do so, we will need to derive the Gibbs sampling distribution (probabilities corre-
sponding to all states or configurations if there are multiple r.v.s), which is the conditional
distribution from which the samples are drawn. Here, we can derive the sampling distribution
for first sample Si:
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To compute it with the actual values, namely, S® = {sy,...s,}, we have (a lot of terms cancel
out in the numerator and denominator because of the exponential in the energy function of
the Ising model and the only term left out is the one that’s operating on the pixel z):
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To actually calculate the probability of P(S1|S° g ,I), we just need to plug in the states of
S; and calculate the following probabilities: P(S; = 1|S° ¢ ,I) and P(S; = 0[S° ¢, ,I), and
making sure they sum up to 1. With these probabilities, we can then sample S7.

We can then generalize to Si,....S! to get S!. The "Markov” property comes into play
in Gibbs sampling between the iterations. The set of samples (SJ) at any iteration is not an
independent sequence; there is a Markov chain in that such that the draw at time j depends
only on samples at time 7 — 1.

Here P(S(x)|S(y) : y € Nbh(z)|I) is like a generalized form of P(Sy,S° /L), which
only is for the first pixel. The calculation of this sampling distribution is more feasible than
the full conditional distribution as 1) this is a distribution of only one random variable and
hence it has much less of configurations (in fact just the states of that r.v.) as compared to a
full joint distribution on all random variables. 2) there is the neighboring concept so that we
only need calculate the S(neighbors) in the pairwise potential term. So the computation here
is much less. Conversely, if we want to sample from the full joint conditional distribution,
we would need to obtain probabilities of every single possible configuration of the random
variables in order to calculate the full joint conditional distribution and then sample from it.
This is sometimes hard or impossible because as the number of random variable and states
increase the number of configurations goes exponentially and thus the calculation becomes
intractable.

3.2 What theoretical results guarantee that Gibbs sampling will
converge to samples from the Gibbs distribution?

Gibbs sampling is one of the MCMC algorithms for doing approximate inference. Just like
other MCMC algorithms such as the Metropolic-Hastings algorithm, the theory of MCMC
guarantees that the samples converge in distribution to a draw from the target joint posterior
after the ”burn-in” period (Gilks et al., 1996; also see the Computational Cognition Cheat
Sheet on Metropolis-Hastings sampling). The proof uses law of large numbers and the central
limit theorem and says that the MCMC algorithms allow us to calculate the same monte
carlo approximation to the integral below.
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where, f(x) is the target density, () is one configuration of the random sequence X, and
h(.) is a function operated on X. The theory basically shows that if we take the average of
all J samples then that will converge to the expectation in the middle.



