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1 Multidimensional Signal Processing

1.1 1D, 2D, and 3D Signals

A 1D signal is:

• f(t), a function of one variable, or

• a waveform, or

• a graph (a collection of points in a 2D space)

A 2D signal is:

• f(x, y), a function of two variables, or

• an image, or

• a graph (a collection of points in a 3D space)

A 3D signal is:

• f(x, y, z), a function of three variables, or

• a volumetric image, or

• a graph (a collection of points in a 4D space)

1.2 Separable Signals

• f(x, y) = f1(x)f2(y)

• f(x, y, z) = f1(x)f2(y)f3(z)

1.3 Delta Functions

The 1D delta or impulse function is defined by two properties:

δ(x) = 0, x 6= 0

∞∫
−∞

f(x)δ(x) dx = f(0)
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1.3.1 Properties of the Delta Function

δ(−x) = δ(x) Even

δ(x, y) = δ(x)δ(y) Separable

∞∫
−∞

f(ξ)δ(ξ − x) dξ = f(x) Sifting

∞∫
−∞

∞∫
−∞

f(ξ, η)δ(ξ − x, η − y) dξdη = f(x, y) 2D Sifting

∞∫
−∞

δ(x) dx = 1 The area under delta is unity

1.4 Transformations of Signals

The impulse response or point spread function due to an impulse at (ξ, η) is
h(x, y; ξ, η) = H[δ(x− ξ, y − η)]

docs/Medical Imaging Systems/images/fig1.jpg
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A linear System satisfies:

H[w1f1 + w2f2] = w1H[f1] + w2H[f2]

for all signals f1 and f2 and weightsw1 and w2 A linear system satisfies the
superposition integral:

g(x, y) =

∞∫
−∞

∞∫
−∞

h(x, y; ξ, η)f(ξ, η) dξdη

1.5 Shift-Invariant Systems

A system that is shift-invariant is

g(x− x0, y − y0) = H[f(x− x0, y − y0)]

for every (x0,y0) and f(., .)

Therefore, a linear shift-invariant(LSI) system yields

h(x, y; ξ, η)→ h(x− ξ, y − η)

An LSI system satisfies the convolution intergral:

g(x, y) =

∞∫
−∞

∞∫
−∞

h(x− ξ, y − η)f(ξ, η) dξdη

which is abbreviated as

g(x, y) = h(x, y) ∗ f(x, y)

If we let ξ0 = x− ξ and η0 = y − η, we have the following:

g(x, y) =

−∞∫
∞

−∞∫
∞

h(ξ0, η0)f(x− ξ0, y − η0) − dξ0 − dη0

=

∞∫
−∞

∞∫
−∞

h(ξ, η)f(x− ξ, y − η) dξdη

(1)

Community proved
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1.6 LSI Systems and Complex Exponentials

A 1D complex exponential signal is

ej2πux = cos(2πux) + jsin(2πux)

A 2D complex exponential signal is

ej2π(ux+vy) = ej2πuxej2πvy

The response of an LSI system to

f(x, y) = ej2π(ux+vy)

is
g(x, y) = H(u, v)ej2π(ux+vy)

Use convolution integral

g(x, y) =

∞∫
−∞

∞∫
−∞

h(ξ, η)f(x− ξ, y − η) dξdη

=

∞∫
−∞

∞∫
−∞

h(ξ, η)ej2π(u(x−ξ)+v(y−η)) dξdη

=

∞∫
−∞

∞∫
−∞

h(ξ, η)ej2πuxe−j2πuξej2πvye−j2πvη dξdη

=

∞∫
−∞

∞∫
−∞

h(ξ, η)e−j2π(uξ+vη) dξdηf(x, y)

(2)

ξ and η are just dummy variables, change them to x and y, we get the
function

H(u, v) =

∞∫
−∞

∞∫
−∞

h(x, y)e−j2π(ux+vy) dxdy

which is called the Fourier transform of h(x, y)
The inverse Fourier transform of H(u, v) is

h(x, y) =

∞∫
−∞

∞∫
−∞

H(u, v)e+j2π(ux+vy) dudv

9
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1.7 Comments on the Fourier Transform

• e−j2π(ux+vy) is a complex sinusoid ”oriented” in the (u,v) direction

• 2πux has units of radians

• ux is unitless

• x has units of length

• u has units of inverse length

• u is referred to as cyclic/spatial frequency

• The 1D Fourier transform pair is given by

F (u) =

∞∫
−∞

f(x)e−j2πuxdx

f(x) =

∞∫
−∞

F (u)e+j2πuxdu

1.8 Properties of the Fourier Transform

• Linearity:
F [w1f1 + w2f2] = w1F1 + w2F2

• Scaling(proof):

F{f(αx, βy)} =

∞∫
−∞

∞∫
−∞

f(αx, βy)e−j2π(ux+vy)dxdy

Let x′ = αx, y′ = βy, we have dx′ = αdx and dy′ = αdy
For α,β > 0

F{f(αx, βy)} =

∞∫
−∞

∞∫
−∞

f(x′, y′)e
−j2π(ux

′
α

+v y
′
β

)
d
x′

α
d
y′

β

If α < 0, x′ = −|α|x

F{f(αx, βy)} =
∞∫
−∞

−∞∫
∞

f(x′, y′)e
−j2π(ux

′
α

+v y
′
β

)
d x′

−|α|d
y′

β

10
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=
∞∫
−∞

∞∫
−∞

f(x′, y′)e
−j2π(ux

′
α

+v y
′
β

)
d x
′

|α|d
y′

β

=
∞∫
−∞

∞∫
−∞

f(x′, y′)e
−j2π(x′ u

α
+y′ v

β
)
d x
′

|α|d
y′

β

= 1
|αβ|F (uα ,

v
β )

• Shifting(proof):
F{f(x− α, y − β)} = F (u, v)e−j2π(uα+vβ)

F{f(x, y)e+j2π(µ0x+ν0y)} =

∞∫
−∞

∞∫
−∞

f(x, y)e+j2π(µ0x+ν0y)e−j2π(ux+vy)dxdy

=

∞∫
−∞

∞∫
−∞

f(x, y)e−j2π((u−µ0)x+(v−ν0)y)dxdy

= F (u− µ, v − ν)

(3)

• Convolution Theorem:

F [f1 ∗ f2] = F1F2

• Correlation:

F [

∞∫
−∞

∞∫
−∞

f1(ξ, η)f∗2 (x+ ξ, y + η)dξdη]

= F1(u, v)F ∗2 (u, v)

• Parseval’s theorem:
∞∫
−∞

∞∫
−∞

|f(x, y)|2dxdy

=

∞∫
−∞

∞∫
−∞

|F (u, v)|2dudv

• Sinusoid (1D) (Proof):

we know that sinθ = ejθ−e−jθ
2j
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F{sin2πu0x} =

∞∫
−∞

sin2πu0xe
−j2πuxdx

=

∞∫
−∞

ej2πu0x − e−j2πu0x

2j
e−j2πuxdx

=
1

2j
[

∞∫
−∞

e−j2π(u−u0)xdx−
∞∫
−∞

e−j2π(u+u0)xdx]

=
1

2j
[δ(u− u0)− δ(u+ u0)]

(4)

Similarly for cosine, we have

F{cos2πu0x} =
1

2
[δ(u− u0) + δ(u+ u0)] (5)

1.9 Rect and Sinc

Rect function: (”gate” or ”pedestal”)

rect(x) =

{
1 if |x| ≤ 1/2

0 otherwise

Sinc function:

12



Ye Li 580.472 Class Notes: August 28, 2014 - Dec 15, 2014

sinc(x) = sinπx
πx

F{rect(x)} =

1/2∫
−1/2

1× e−j2πuxdx

=
−1

j2πu
e−j2πu|1/2−1/2

= − 1

j2πu
[e−jπu − ejπu]

=
sinπu

πu

(6)

e.g., a square detector having width D and PSF h can be described by the
following equation

f(x, y)→ h → g(x, y)

where, h(x, y) = rect( xD )rect( yD ) and H(u, v) = D2sinc(Dx)sinc(Dy)

1.10 Hankel Transform

Rotation(Rotate same angle in Fourier domain)
x′ = xcosθ − ysinθ
y′ = xsinθ + ycosθ

Circular Symmetry

• 2D signal is circularly symmetric if
fθ(x, y) = f(x, y) for every θ

13
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• F2D(fθ)(u, v) is also circularly symmetric

• f(x, y) and F (u, v) are functions of radii only

f(x, y) = f(r)

and
F (u, v) = F (q)

Hankel Transform

H{exp(−πr2)} = exp{−πq2}

A Fourier transform of a Gaussian is a Gaussian.

2 Image Quality

2.1 Contrast and Mudulation

Sinusodal image brightness function:

f(x) = Asin(2πu0x)

and

fmean =
fmin + fmax

2
= B,Amplitude =

fmax − fmin
2

= A

Thus, the image brightness function is

f(x) = B +Asin(2πu0x)

And the contrast is

mf = contrast =
amplitude

average
=
A

B
=

fmax−fmin
2

fmin+fmax
2

=
fmax − fmin
fmin + fmax

14
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e.g., a signal centered at 0 would have its contrast undefined?

Now let’s consider expressing g(x) in time domain. For that, we need to
rewrite the signal sin(2πu0x) = 1

2j (e
(−j2πu0x) − e(j2πu0x)).

f(x)→ H(u) → g(x) = BH(0) +
A

2j
e−j2πu0xH(u0)− A

2j
e+j2πu0xH(−u0)

= BH(0) +
A

2j
|H(u0)|[e−j(2πu0x−∠H(u0)) − ej(2πu0x+∠H(−u0))]

= BH(0) +A|H(u0)|sin(2πu0x+ ∠H(u0))

(7)

and,

H(u0) = |H(u0)|ej∠H(u0)

Contrast: modulation of the output

mg =
A|H(u0)|
BH(0)

=
|H(u0)|
H(0)

mf

Modulation Transfer Function

MTF =
mg

mf
=
|H(u, 0)|
H(0, 0)

If a system has only gain, its MTF is 1.
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Local Contrast

C =
ft − fb
fb

where ft is the target intensity and fb is the background intensity.

2.2 Resolution

Resolution is defined as the highest line density such that lines can be dis-
tinguished.

Units:

• gamma camera: 2-3 lp/cm

• CT: 2 lp/mm

• chest x-ray: 6-8 lp/mm

Line function, f(x, y)

f(x, y) = δl(x, y) = δ(x)

∞∫
−∞

δ(y)dy =

∞∫
−∞

δ(x)δ(y)dy =

∞∫
−∞

δ(x, y)dy

16
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g(x, y) =

∞∫
−∞

∞∫
−∞

[h(ξ, η)δl(x− ξ, y − η)]dξdη

=

∞∫
−∞

∞∫
−∞

[h(ξ, η)δ(x− ξ)]dξdη

l(x) =

∞∫
−∞

h(x, η)dη

(8)

where, l(x) is the Line Spread Function(LSF).

Note that l(x) = l(−x) and
∞∫
−∞

l(x)dx = 1

F{l(x)} =

∞∫
−∞

[

∞∫
−∞

h(x, y)dy]e−j2πuxdx

=

∞∫
−∞

∞∫
−∞

h(x, y)e−j2πuxe−j2π0ydxdy

L(u) = H(u, 0)

(9)

Therefore, MTF can also be expressed using L(u) as follows:

MTF (u) =
|L(u)|
L(0)

=
|H(u, 0)|
H(0, 0)

e.g., h(x) = e−
x2

2σ2

To find its FWHM, first calculate x1/2

1
2 = e−

x2
1/2

2σ2 ⇒ x1/2 =
√

2σ2ln2 = 1.1776⇒ FWHM = 2× 1.1776

2.3 Noise

• Typical imaging model:

g(x, y) = f(x, y) ∗ h(x, y) +N(x, y)

• N(x,y) is noise

• N(x,y) is a random variable at each (x,y)

17
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• N(x,y) could be continuous or discrete

• Probability Distribution Function (PDF)

PN (η) = Pr[N ≤ η]

Continuous Random Variables

• Probability density function(pdf):

pN (η) =
dPN (η)

dη

• Mean:

µN =

∞∫
−∞

ηpN (η)dη

• Variance:

σ2
N =

∞∫
−∞

(η − µN )2pN (η)dη

• Standard deviation:

σN =
√
σ2
N

Gaussian Random Variable

• pdf

pN (η) =
1√

2πσ2
e−

(η−µ)2

2σ2

• mean:
µN = µ

• variance:
σ2
N = σ2

• standard deviation:
σN = σ

Discrete Random Variables

18
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• Probability mass function(PMF):

pN (ηi) = Pr[N = ηi]

• Mean:
µN =

∑
allηi

ηipN (ηi)

• Variance:
σ2
N =

∑
allηi

(ηi − µN )2pN (ηi)

• Standard deviation:

σN =
√
σ2
N

Poisson Random Variable

• Probability mass function(PMF):

pN (k) =
ake
−a

k!
, fork = 0, 1...

• Mean:
uN = a

• Variance:
σ2
N = a

• Standard deviation
σN =

√
a

Expectation

E[f(N)] =

∞∫
−∞

f(η)pN (η)dη

µN = E[N ]

σ2
N = E[(N − µN )2]

σ2
N = E[N2]− µ2

N

Sum of Independent Random Variables

• Let N and M be joint random variables
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• Let Q = N + M

• Then
µQ = µN + µM

• If N and M are independent then

σ2
Q = σ2

N + σ2
M

e.g., Given the following probability mass function, calculate the mean and
variance.

Mean:

µN =
∑
allηi

ηipN (ηi) = (−1)(1/6) + (0)(1/3) + (1)(1/3) + (2)(1/6) =
1

2

Variance:

σ2
N =

∑
allηi

(ηi−µN )2pN (ηi) = E[N2]−µ2
N = (−1)2(1/6)+(0)2(1/3)+(1)2(1/3)+(2)2(1/6)−(1/2)2 =

11

12

Signal In Noise

• Signal is f

• Noise if N
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• Signal-to-noise ratio

SNRa =
amplitude(f)

amplitude(N)

SNRp =
power(f)

power(N)

• SNR in decibels
SNR(dB) = 20log10SNRa

SNR(dB) = 10log10SNRp

• Common example of SNR

– signal height is A

– noise standard deviation is σN

– SNR is then

SNRa =
A

σN

e.g., given a point x-ray source, how many x-ray photons hit this pixel?

Soln:
Ideally, whatever number of photons you can get.
Actually, the number of photons you get is a Random variable (R.V.).

Noise and Blurring Degrade Quality
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2.4 Sampling

• Point Sampling
f [m,n] = f(m∆x, n∆y)

Impulse Trains

• Impulse train or comb or shah function:

comb(x) =

∞∑
n=−∞

δ(x− n)

• Fourier transform of comb

F{comb(x)} = comb(u)

• Impulse scaling property:
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we know that
F{δ(x)} = 1

F{f(ax)} =
1

|a|
F (
u

a
) and F{δ(ax)} =

1

|a|
and F{ 1

|a|
δ(x)} =

1

|a|
So we can infer the following expression:

δ(ax) =
1

a
δ(x)

which shows the Impulse Scaling Property

• Relation(sampling function) to shah/comb function:

∞∑
n=−∞

δ(x− n∆x) =

∞∑
n=−∞

δ(∆x(
x

∆x
− n)) (10)

=

∞∑
n=−∞

1

∆x
δ(

x

∆x
− n) (11)

δs(x,∆x) =
1

∆x
comb(

x

∆x
) (12)

• Sampled signal
fs(x) = f(x)δs(x; ∆x)

• fs(x) contains the same information as

f [k] = f(k∆x)
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• Fourier transform of sampling function, fs(x)

Fs(u) = F (u) ∗ F{δs(x; ∆x)} (13)

= F (u) ∗ F{ 1

∆x
comb(

x

∆x
)} (14)

= F (u) ∗ comb(∆xu) (15)

= F (u) ∗
∞∑

n=−∞
δ(∆xu− n) (16)

= F (u) ∗ 1

∆x

∞∑
n=−∞

δ(u− n

∆x
) (17)

• Sampled spectrum is therefore:

Fs(u) =
1

∆x

∞∑
n=−∞

F (u) ∗ δ(u− n

∆x
)

• Sampled spectrum in 2D
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2.5 Sampling Theorem

• The spatial sampling frequency is:

us =
1

∆x

• Let U be the highest frequency in F(u).

• Then Sampled spectra do not overlap if

us > 2U

• 2U is called the Nyquist rate
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2.6 Aliasing

Aliasing occurs if
us < 2U

.

• Overlapping sampled spectra.

• Corruption of high frequencies

• Artifacts are high frequency patterns
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Anti-aliasing Filters

• us =
1

∆x

• Highest frequency in f(x) is U .

• Need to filter the signal f(x) before sampling.

• Use low pass filter with cutoff frequency us/2

2.7 Area Detector Analysis

• Shape of detector: p(x) [maybe rect(x/D)]

• Area detector sampling model:

fs(x) = [p(x) ∗ f(x)]δs(x; ∆x)

• Fourier domain:

Fs = [P (u)F (u)] ∗ comb(∆xu) (18)

= [P (u)F (u)] ∗ 1

∆x

∞∑
n=−∞

δ(u− n

∆x
) (19)

e.g. A detector represented by a rect function having aliasing can be
anti-aliased by grouping them together.
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2.8 Artifacts

• Artifacts: image features that do not correspond to a real object, and
are not due to noise

– star artifact, beam hardening artifact, ring artifact, ghosts

• Distortion: geometric or intensity changes not corresponding to the
real object

– magnification,barrel or pincushion distortion, quantization, satu-
ration

2.9 Accuracy

• Accuracy: 1. Conformity to truth(quantitative accuracy) 2. clinical
utility(diagnostic accuracy)

• Quantitative accuracy: 1. Numerical accuracy(bias, precision) 2. Ge-
ometric accuracy( dimensions)

• Diagnostic accuracy(accurate diagnosis of disease)

Diagnostic Quality

• Contingency table:
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• Variables:

Diagnostic Accuracy

• sensitivity=
a

a+ c

• specificity=
d

b+ d

• diagnostic accuracy==
a+ d

a+ b+ c+ d

Disease Prevalence

• positive predictive value =
a

a+ b

• negative predictive value =
d

c+ d

• prevalence==
a+ c

a+ b+ c+ d

e.g.
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3 Physics of Radiography

3.1 X-Ray Modalities

• Chest x-rays

• Mammography

• Dental x-rays

• Fluoroscopy

• Angiography

• Computed tomography

• These do not involve radioactivity

3.2 Atomic Structure

• nucleons = (protons, neutrons)

• mass number A is number of nucleons

• atomic number Z is number of protons

• nuclide is particular combination of nucleons

Electrons

Electron Binding Energy
Definition: Nuclear binding energy is the energy required to split the nucleus
of an atom into its component parts. The component parts are neutrons and
protons, which are collectively called nucleons. The binding energy of nu-
clei is usually a positive number, since most nuclei require net energy to
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separate them into individual protons and neutrons. Thus, the mass of an
atom’s nucleus is usually less than the sum of the individual masses of the
constituent protons and neutrons when separated. This notable difference
is a measure of the nuclear binding energy, which is a result of forces that
hold the nucleus together. During the splitting of the nucleus, some of the
mass of the nucleus (i.e. some nucleons) gets converted into huge amounts
of energy (according to Einstein’s equation E=mc2) and thus this mass is
removed from the total mass of the original particles, and the mass is miss-
ing in the resulting nucleus. This missing mass is known as the mass defect,
and represents the energy released when the nucleus is formed.

Facts

• Binding energy of hydrogen electron: 13.6 eV

• 1 eV is the kinetic energy gained by an electron that is accelerated
across a one (1) volt potential

Ionization and Excitation

• Ionization is knocking an electron out of atom, which creates one elec-
tron and one ion

• Excitation is knocking an electron to a higher orbit

Characteristic Radiation
Definition: Ionized or excited atom returns to ground state by rearranging
of electrons, which causes atom to give off energy. This energy is given off
as characteristic radiation(infrared, light, and x-rays).

3.3 Ionizing Radiation

• Radiation with energy > 13.6 ev is ionizing

• Energy required to ionize:
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– air =34 ev

– lead = 1 kev

– tungsten =4 kev

• Radiation energies in medical imaging 30 KeV-511KeV, which can
ionize 10-40,000 atoms

Particulate Radiation
Definition: Particle radiation is the radiation of energy by means of fast-
moving subatomic particles. Particle radiation is referred to as a particle
beam if the particles are all moving in the same direction, similar to a light
beam. Due to the wave-particle duality, all moving particles also have wave
character. Higher energy particles more easily exhibit particle characteris-
tics, while lower energy particles more easily exhibit wave characteristics.In
the course, we are primarily concerned with electron(x-ray tube) and posi-
tion in later chapters.
Note: an electron accelerated across 100 kV potential difference yields a 100
keV electron.

3.4 Electromagnetic EM Radiation

Definition: Electromagnetic radiation (EM radiation, EMR, or light) is a
form of energy released by electromagnetic processes. In physics, all EMR
is referred to as light, but colloquially light often refers exclusively to visible
light, or collectively to visible, infrared and ultraviolet light. Classically,
EMR consists of electromagnetic waves, which are synchronized oscillations
of electric and magnetic fields that propagate at the speed of light. The
oscillations of the two fields are perpendicular to each other and perpendic-
ular to the direction of energy and wave propagation, forming a transverse
wave. Electromagnetic waves can be characterized by either the frequency or
wavelength of their oscillations to form the electromagnetic spectrum, which
includes, in order of increasing frequency and decreasing wavelength: radio
waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-
rays and gamma rays. Electromagnetic waves are produced whenever
charged particles are accelerated, and they can subsequently interact
with any charged particles. EM waves carry energy, momentum and angular
momentum away from their source particle and can impart those quantities
to matter with which they interact. EM waves are massless, but they are
still affected by gravity.

• Electric and magnetic wave at right angles
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– waves with frequency ν, or

– ”particles(photons) with energy E

E = hν

• Planck’s constant h = 4.14× 10−15ev − sec

X-ray Spectrum

3.5 Energetic Electron Interactions

• Two primary interactions:

– Collisional transfer

– Radiative transfer

• Collisional transfer

– Electron hits other electrons

– Occasionally produces delta ray(secondary electrons with enough
energy to escape a significant distance away from the primary
radiation beam and produce further ionization)

• Two types of radiative transfer:
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– characteristic x-rays (emitted from heavy elements when their
electrons make transitions between the low energy atomic energy
levels. Vacancies are produced and electrons drop down from
above to fill the gap.)

– bremsstrahlung x-rays

∗ electron grazes nucleus, slows down

∗ energy loss generates x-ray

3.6 EM Interactions

• Photoelectric effect

• Compton scattering

Photoelectric effect

• Atom completely absorbs incident photon

• All energy is transferred

• Atom produces

– characteristic radiation, and/or
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– energetic electron(s)

• Characteristic radiation might be

– x-ray,or

– light

Illustration of Photoelectric Effect

Anger Electron
Definition: When a core electron is removed, leaving a vacancy, an electron
from a higher energy level may fall into the vacancy, resulting in a release
of energy. Although most of the time this energy is released in the form of
an emitted photon, the energy can also be transferred to another electron,
which is ejected from the atom. Compton Scattering

• Photon collides with outer-shell electron

• Photon is deflected, angle θ

• Deflected photon has lower energy:

E′ =
E

1 + E
1− cosθ
m0c2

• m0 is rest mass of electron

• m0c
2 = 511keV
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Illustration of Compton Scattering

Probability of EM Interactions

• Photoelectric effect:

Prob[photoelectricevent] ∝
Z4
eff

(hν)3

• Photons are more penetrating at higher frequencies/energies

• Compton scattering:

Prob[Comptonevent] ∝ ED

• ED is approximately constant over diagnostic range

3.7 Beam Strength: Photon Counts

• Photon fluence:

Φ =
N

A

• Photon fluence rate:

φ =
N

A∆t

Beam Strength: Energy Flow

• Energy fluence:

Ψ =
N

Ahν
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• Energy fluence rate:

ψ =
Nhν

A∆t

• Intensity: (= ψ)

I(E) =
NE

A∆t

Polyenergetic Beam Strength

• X-ray spectrum S(E):

• S(E) is the number of photons per unit are per unit energy per unit
time

• Photon fluence rate from spectrum:

φ =

∞∫
0

S(E′)dE′

• Intensity from spectrum:

I =

∞∫
0

E′S(E′)dE′

3.8 EM Attenuation Geometries
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Monoenergetic

• Non-homogeneous slab:

dN

N
= −µ(x)dx

• Integration yields:

N(x) = N0exp{−
x∫

0

µ(x′)dx′}

• For intensity:

I(x) = I0exp{−
x∫

0

µ(x′)dx′}

Polyenergetic

• Must deal with x-ray spectrum S0(E)

• Abandon photon counting: use intensity

• For heterogeneous materials

I(x) =

∞∫
0

S0(E′)E′exp{−
x∫

0

µ(x′;E′)dx′}dE′

• Not very useful

• Better to define effective energy, use monoenergetic approximation

Mass Attenuation Coefficient, µ/ρ
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3.9 EM Dose

Exposure: (the creation of ions)

• How many ions are created?

• Exposure X, the number of ion pairs produced in a specific volume of
air by EM radiation

• SI Units: C/kg

• Common Units: roentgen, R

1C/kg = 3876R

Dose: (the deposition of energy)

• How much energy is deposited into material?

• Dose, D, the energy deposited per unit volume
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• SI unit: Gray (Gy) 1 Gy = 1 J/kg

• Common unit: rad
1Gy = 100rads

• When X = 1 R soft tissue incurs 1 rad absorbed dose.

Kerma

• Kerma, K, is the energy deposited into the electrons of a material

• At diagnostic energies in the body, K(kerma) = D (dose)

• In general, K≥ D. Some electrons can cause bremsstrahlung and their
energy irradiated away ⇒ no dose. Not likely in body.

4 Projection Radiography

Properties

• High resolution

• Low dose

• Broad coverage

• Short exposure time

40



Ye Li 580.472 Class Notes: August 28, 2014 - Dec 15, 2014

4.1 Radiographic System

4.2 X-ray Tube

A current, typically 3-5 amperes at 6-12 volts, is passed through a thin
thoriated tungsten wire, called the filament, contained within the cathode
assembly. Electrical resistance causes the filament to heat up and discharge
electrons in a cloud around the filament through a process called thermionic
emission. These electrons are now available to flow (i.e., be accelerated)
toward the anode when the anode voltage is applied, producing the tube
current, which is referred to as the mA. The filament current directly
controls the tube current because the filament current controls
filament heat, which in turn determines the number of discharged
electrons. The x-ray control console is calibrated according to the tube
current, which typically ranges between 50 and 1,200 mA.
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Once the filament current is applied, the x-ray tube is primed to produce
x-rays. This is accomplished by applying a high voltage, the tube voltage or
kV p, between the anode and cathode for a brief period of time. The abbre-
viation kVp refers to the peak kilovoltage applied to the anode; the voltage
ripple(temporal variation) below the peak value depends on the specific type
of high-voltage generator in use. Typical values for the tube voltage lie in
the range 30-150 kVp.
Focusing cup
Definition: A focusing cup is a small depression in the cathode contain-
ing the filament and is shaped to help focus the electron beam toward a
particular spot on the anode. X-ray Tube Components

• Filament controls tube current(mA)

• Cathode and focusing cup

• Anode is applied a high voltage

– 30-150 kVp

– Made of tungsten

– Bombarded by energetic electrons which transfer energy by both
collisional and radiative transfer, resulting in both characteristic
and bremsstrahlung x-rays.

– Bremsstrahlung is 1 percent
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– Head is 99 percent

– Spins at 3,200-3,600 rpm

• Glass housing; vacuum

Exposure control
The overall exposure is determined by the duration of the applied kVp,
which is controlled by either a fixed timer circuit or an automatic exposure
control(AEC) timer. A fixed timer is generally a silicon-controlled recti-
fier(SCR) switch timed by a microprocessor. Timing accuracy for these cir-
cuits is approximately 0.001 seconds. AEC timers have 5-mm-thick parallel-
plate ionization chambers placed between the patient table the film screen
cassette. An ionization chamber is a radiation detector that generates a cur-
rent when air molecules are ionized by x-rays passing through the chamber
and the free electrons and ions are attached to anode and cathode plates, re-
spectively, which are held at a constant voltage. The voltage achieved across
the plates is used to trigger the SCR, which shuts off the tube voltage and
terminates the exposure.

• Tube current mA controlled by filament current, and kVp

• mA times exposure time yields mAs

mAs measures x-ray exposure

• when a fixed timer is used, the radiologist controls both the mA and
the exposure time directly and thereby determines the mAs for the
exposure.

• In AEC timers, the mAs is set by the radiologist and the exposure
time is determined automatically by the AEC circuitry. A maximum
time is set to prevent accidental overdose in the event the AEC cir-
cuit malfunctions or the ionization chamber is missing or incorrectly
positioned.

X-ray Spectra
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The profile above shows a progressive shift in the position of the spectrum
”to the right”(i.e.,to higher average energies) as the beam passes through
successive materials. This increase in the beam’s ”effective energy” is called
beam hardening.

4.3 Filtration and Restriction

Definition: The bremsstrahlung x-rays that are generated within the anode
do not all enter the patient, and not all that enter the patient end up leaving
the patient. In this section, we discuss modifications to the x-ray beam that
take place before the x-rays enter the body. Filtration is the process of
absorbing low-energy x-ray photons before they enter the patient. Restric-
tion is the process of absorbing the x-rays outside a certain field of view.
Filtration
The maximum energy of emitted x-ray photons is determined by the tube
voltage. For example, if the tube voltage is 100 kVp, then the maximum
photon energy is 100 keV(recall that an electron accelerated across 100 kV
potential difference yields a 100 keV electron, and if this electron gets com-
pletely stopped by the nucleus, then its loss loss is equal to 100 keV, which
is then dissipated as x-ray). Because the x-ray photons emitted from an
x-ray tube have a distribution of energies, the x-ray sources used in medical
imaging systems are polyenergetic.
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• Inherent filtration

– within anode

– glass housing and dielectric oil that surrounds the x-ray tube(this
effect might be accentuated over time since aging x-ray tube tend
to accumulate a tungsten file on the inside of the housing due to
vaporization of the filament during repeated heating)

• Added filtration

– Aluminum(1-3mm thick)

– Foe higher energy systems, copper might be used, but need to
note that copper must be followed by aluminum in order to at-
tenuate the 8 keV characteristic x-ray photons created within the
copper.

– Measured in mm Al/Eq

Restriction

• Goal: To direct beam toward desired anatomy.

Compensation Filters

• To even out detector exposure
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Contrast Agents
Definition: Different attenuation in the body gives rise to contrast in the
x-ray image. Often, however, different soft tissue structures are difficult
to visualize because of insufficient intrinsic contrast. This situation can
be improved by using contrast agents-chemical compounds that are in-
troduced into the body in order to increase x-ray absorption within the
anatomical regions into which they are introduced, thereby enhancing x-ray
contrast(compared with neighboring regions without such agents).

4.4 Scatter Control

• Ideal x-ray path: a line!!!
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• Compton scattering causes blurring

• how to reduce scatter?

– airgap

– scanning slit

– grid

Grid
Definition: Scatter-reducing grids use thin strips of lead alternating with
highly transmissive interspace material, typically aluminum and sometimes
plastic. A typical x-ray grid is shown below.

• Effectiveness in scatter reduction?

gridratio =
h

b

• 6:1 to 16:1 (radiography) or 2:1 (mammo)

• Grid spacing is generally reported using its reciprocal, which is known
as grid frequency, which ranges from 60 cm−1 for conventional radio-
graphic systems to as much as 80 cm−1 for mammography systems.
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Problems with Grids

• Radiation is absorbed by grid as grid ration increases(the lead strips
become more closely packed)

• the grid conversion factor(GCF) characterizes the amount of addi-
tional exposure required for a particular grid.

GCF =
mAs with the grid

mAs without the grid

• Grid visible on x-ray detector

– move grid during exposure

– linear or circular motion

4.5 Film, Screen, and Cassette

Film-Screen Detectors In 1895, Roentgen discovered x-rays and made the
first radiograph by allowing the x-rays to directly expose a photographic
plate. X-rays can directly expose today’s modern photographic film, but
this is a very inefficient way to create a radiograph. In fact, only about
1-2 percent of the x-rays are stopped by the film, so creating radiographs
by direct file exposure requires an unnecessarily large x-ray dose to the
patient. To greatly imporve their efficiency, file-based diagnostic x-ray units
always have intensifying screens on both sides of the radiographic film. The
intensifying screen stopsmost of the x-rays and convert them to
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light, which then exposes the film. This is a very efficient process, and
the screens cause only a small amount of additional image blurring.

4.5.1 Intensifying Screen

• Film stops only 1-2

• Film stops light really well

• Screens are used on both the front and back of the radiographic film, all
parts of the screen except the phosphor must be uniformly radiolucent.

• Phosphor is the active part of an intensifying screen; its purpose is to
transform x-ray photons into light photons.

• The light photons then travel into the film, causing it to be exposed
and to form a latent image.

• The latent image is the virtual image resident in the file, but it is not
yet viewable by human.

Phosphors
Definition: Phosphors are examples of materials that are luminescent; that
is, they convert one form of energy, in this case x-rays, into light. Two
types of luminescence are distinguished: fluorescence, in which the emission
of light takes place entirely within 1 ∗ 10−8 second of the excitation, and
phosphorescence, in which light emission can be delayed and extended over
a longer period of time. For screens, it is desirable to use a luminescent
material that is much more fluorescent than phosphorescent. This way,
there is little chance of an afterglow that might spoil the exposure by either
motion after exposure or by light from a previous exposure.
The speed of a screen is really just a measure of its conversion efficiency.
If the conversion efficiency is higher, then the screen is faster, because the
larger numbers of light photons emitted by the phosphor will expose the
film faster.

49



Ye Li 580.472 Class Notes: August 28, 2014 - Dec 15, 2014

4.5.2 Radiographic Cassette

• Cassette holds two screens; makes ”sandwich”

• one side is radiolucent, the other side includes a sheet of lead foil

4.5.3 Film

• Optical transmissivity

T =
It
Ii

• Optical density

D = log10
It
Ii

• O = 1/T is optical opacity

• Usable density 0.25 ≤ D ≤ 2.25

• Best densities 1 ≤ D ≤ 1.5

H D Curve, optical density from x-ray exposure for film-screen
combination
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X-ray Exposure to Film Density

• X-ray exposure yields optical density

D = Γlog10
X

X0

• Γ is film gamma

• Typical ranges: 0.5 ≤ Γ ≤ 3.0

• Latitude is range exposures where relationship is linear

• Speed is inverse of exposure at which

D = 1 + fog level
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4.5.4 Digital Radiography: CR

• Introduced in 1980’s; replacing film

• Indirect systems: computed radiography (CR)

• Store latent images in photostimulable imaging plate(PSP)

– phosphor = barium fluorohalide bromide with europium activator

• Readout using read focused laser scanning device

– Blue light is emitted in proportion to number of tapped electrons

• 10 pixels/mm, 16-bit word, 2K * 2K pixels

4.5.5 Digital Radiography: DR

• Direct systems: direct digital radiography(DR)

• Indirect:

– x-rays to light using scintillator (e.g., CsI: TI)

– light to charge using amorphous silicon (a-Si) photodetector

• Direct:

– x-rays to charge using amorphous selenium(a-Se)

• Charge read out using thin film transistor(TFT)

• 8 pixels/mm, 16-bit word, 1K * 1K pixels
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4.6 Basic Imaging Equation

I(x, y) =

∞∫
0

S0(E′)E′exp{−
r(x,y)∫
0

µ(s;E′, x, y)}dE′

4.7 Geometric Effects

• X-rays are diverging from source

• Undesirable effects:

– cos3θ falloff across detector

– anode heel effect

– pathlength irregularities

– magnification

• I0 is intensity at (0, 0)

• r is distance from (x, y) to x-ray origin

• θ is angle between (0, 0) and (x, y)
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4.7.1 Inverse Square Law

Consider isotropic burst of x-rays with intensity I = NE/A∆t on a sphere.

we know that IA is constant, so we have

I04πd2 = Ir4πr
2

Ir = I0
d2

r2
= I0cos

2θ

e.g., A density maintenance example
In the case of moving the source away to increase field of view.

Question: what mAs(proportional to the number of photons) do I need to
keep the same intensity?

Soln: we want I
(2)
0 = I

(1)
0 , and we know that

I
(2)
0 =

mA
(2)
s

4πd2
2

= I
(1)
0 =

mA
(1)
s

4πd2
1

therefore,

mA(2)
s = mA(1)

s

d2
2

d2
1
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4.7.2 Obliquity

Id = I0cosθ

The following setup gives the proof of the above equation:

From the above setup, we know that

NE

∆t
= I0A = IrA

′

Ir = I0
A

A′
= I0

A

A
cosθ

= I0cosθ

4.7.3 Beam Divergence and Flat Detector

• Inverse square law and obliquity combine

Id(xd, yd) = I0cos
3θ

• can usually be ignored. Why? Because detector is far away and field
of view is often small
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4.7.4 Anode Heel Effect

• Intensity within the x-ray cone

– not uniform

– stronger in the cathode direction

– 45 percent variation is typical

– compensate, use to advantage, or ignore

– we will ignore in math

4.7.5 Path Length of Slab

Uniform slab yields different intensities
The following is the proof.

Id(xd, yd) = I0exp(−
uL

cosθ
)

Together with inverse law and obliquity, we have the following equation:

Id(xd, yd) = I0cos
3θexp(− uL

cosθ
)
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4.7.6 Object Magnification

Size on detector depends on distance from source

w

w1
=
z1

d

w1 = w
d

z1
= wM(z)

• Magnification is

M(z) =
d

z

• Can lead to edge blurring and misleading sizes

4.7.7 Thin Slab Imaging Equation

Define Transmittivity to be

tz(x, y) = exp(−µ(x, y)∆z)
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So, on the detector, the intensity is

Id(xd, yd) = I0cos
3θtz(

x

M(z)
,

y

M(z)
) = I0(

d√
d2 + x2 + y2

)3tz(
xz

d
,
yz

d
)

4.7.8 Sources of Blurring

• Extended source

where s(x, y) is the source spatial distribution

Source diameter on detector:

D′ = −d− z
z

D

Source magnification(negative sign means inverted):

m(z) = −d− z
z

= 1−M(z)

• Source Blurring

– Image of source through pinhole at z

Id(x, y) =
1

4πd2m2(z)
s(

x

m(z)
,

y

m(z)
)

– Intensity at detector:

Id(x, y) =
cos3θ

4πd2m2
tz(

x

M
,
y

M
) ∗ s( x

m
,
y

m
)

• Film-Screen Blurring
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Film-screen impulse response: h(x, y)

• Overall Imaging Equation

Id(x, y) =
cos3θ

4πd2m2
tz(

x

M
,
y

M
) ∗ s( x

m
,
y

m
) ∗ h(x, y)

4.8 Noise

• Local Contrast,

C =
It − Ib
Ib

• Signal is It − Ib

• Variance of noise in background: σ2
b

• Signal to noise

SNR =
It − Ib
σb

=
It − Ib
Ib

Ib
σb

= C
Īb
σb
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4.9 Signal-to-noise

• Model x-ray burst as monoenergetic

– effective energy is hν

– background intensity is therefore equal to

Ib =
Nbhν

A∆t

Nb is Poisson random variable

– Expected value of Ib:

E[Ib] =
N̄bE

A∆t

– Variance of Ib:

V ar[Ib] = V ar[Nb](
E

A∆t
)2 = N̄b(

E

A∆t
)2

Note that V ar[Nb] = N̄b for Poisson

– Standard deviation of Ib

std[Ib] =
√
N̄b

E

A∆t

– Signal-to-noise is

SNR = C
Īb
σb

=
C
N̄bE

A∆t√
N̄b

E

A∆t

= C
√
N̄b

More Photons is better
Question: How to increase SNR? Two Options: either increase
C or N̄b.
Option 1: To increase N̄b, one needs to increase tube current
mAs, which results in higher average photon energy. As a result
of that, the body becomes more transparent so detector receives
more photons.
Option 2: Use contrast agent or decrease the average photon
energy.
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• Detective Quantum Efficiency

– How good is a detector?

– Quantum efficiency(QE):Probability of stopping a photon

– Detective quantum efficiency(DQE)

DQE = (
SNRout
SNRin

)2

∗ Degradation of SNR during detection

∗ ”fraction” of photons that are detected correctly

e.g., Given QE=0.5 and assume perfect detector response. Find the Detecive
Quantum Efficiency of the detector. Soln: SNRin =

√
N̄ and SRNout =√

0.5N̄

DQE = (

√
0.5N̄√
N̄

)2 = 0.5
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Note: This only happens with perfect detector response.
e.g., given the following setup, find the Detecive Quantum Efficiency of the
detector.

DQE = (
SNRout
SNRin

)2 = (

8000√
40000√
10000

)2 = 0.16

What is QE? We don’t know but we know for sure that

DQE ≤ QE

4.10 Compton Scatter

• Compton scattering adds intensity fog: Is

C ′ =
It + Is − (Ib + Is)

Ib + Is
=
It − Ib
Ib + Is

=
It − Ib
Ib

Ib
Ib + Is

= C
Ib

Ib + Is
=

C

1 +
Is
Ib

• Resulting SNR

SNR′ =
SNR√
1 +

Is
Ib

Scattering reduces contrast!!

5 Computed Tomography

5.1 Generations of CT Scanners

• 1G CT Scanner
Too slow, slide source and detector.
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• 2G CT Scanner
More detectors, can move far in angular direction, some angles are
captured already.

• 3G CT Scanner
700-1000 detectors, covers whole body

• 4G CT Scanner
No moving parts, but has scattering problem
This generation scanner has a single rotation source with a larger ring
of stationary detectors. A variation on this theme has the source
outside the detectors with slight gaps between the detectors through
which the x-rays can be fired. Collimation cannot be used in this
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geometry since a detector must receive energy from a source
that moves through many positions. Therefore, the detectors are
highly susceptible to scattering. This factor is so significant that the
image quality in 4G systems is only comparable to that of 3G systems,
not better.

• 5G CT Scanner
Electron beam, tungsten in between detectors, expensive, hard to cal-
ibrate.
Electron beam computed tomography(EBCT) scanners use a flying
electron beam, steered electronically, to hit one of four tungsten an-
ode strips that encircle the patient. X-rays are generated when the
electron beam strikes the tungsten anode; the resultant radiation is
collimated into a fan-beam, which passes through the patient and is
detected on the other side by a stationary ring of detectors, as in 4G
CT systems. Since the anodes and detectors are stationary, no
moving parts are required, and this allows a full set of fan-
beam projection data to be acquired in about 50 millisec-
onds. EBCT is an expensive design, but because of the extremely
small scan-time it is the only commercially available CT method that
can capture stop-action images of a beating heart without electroca-
diographic(ECG) gating.
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• 6G CT Scanner
Helical path of the source
Helical CTs were developed in the late 1980s to address the need for
rapid volumetric data acquistion. With helical CT, a full 60-cm torso
scan can be obtained in about 30 seconds, a full 24-cm lung study in
12 seconds, and a detailed 15-cm angiography study in 30 seconds.
A helical CT scanner consists of a conventional arrangement of the
x-ray source and detectors(as in 3G and 4G systems) which can con-
tinuously rotate. While the tube is rotating and acquiring projection
data, the patient table is set into motion, sliding the patient through
the source-detector plane. The position of the source carves out a he-
lix with respect to the patient. Continuous rotation of the large mass
comprising the x-ray source and detectors requires what is called slip
ring technology in order to communicate with the controlling station-
ary hardware. Power is provided using rings and brushes, while data
are passed using optical links. Rotation periods are typically 0.3 to
0.5 seconds per revolution in modern scanners.

• 7G CT Scanner
A seventh-generation scanner has emerged with the advent of multiple-
row detector CT(MDCT) scanners. In these scanners, a thick fan-
beam is used, and multiple (axial) parallel rows of detectors are used
to collect the x-rays within this thick fan. (some scanners have fan
beams that are so thick they can be thought of as cone beams.)

– 16-320 parallel detector rows(each row contains 896 single solid
state detectors 1.0mm by 1.25 mm in size)

– 20mm-400mm detector ”height”

– 16-320 slices with each gantry revolution
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• Dual-Energy CT
It’s a way to gather more information about tissue characteristics since
the linear attenuation of all tissues is a function of energy. The strategy
is used in dual-energy x-ray absorptiometry projection scanning to
determine bone mineral density in the diagnosis of osteoporosis.

5.1.1 X-ray Tubes in CT

• Use only one tube

– exception: EBCT

– exception: dual-source CT

• 80kVp-140kVp, continuous excitation

– dual-energy is possible

• fan-beam(1-10mm thick), or

• thin-cone collimation 20-80 mm

• More filtering than projection radiography

– copper followed by aluminum

– better approximation to monoenergetic

5.2 CT Detectors

Most modern scanners use solid-state detectors. These detectors contain a
scintillation crystal in the first stage, typically a cadmium tungstate, sodium
iodide, bismuth germanate, yttrium-based, or cesium iodide crystal. X-ray
interact with the crystal mainly by photoelectric effect, producing photo-
electrons, similar to what happens to the phosphor in an intensifying screen.
These electrons are excited and emit visible light when they spontaneously
de-excite. This scintillation process results in a burst of light. The light is
then converted to electric current using a solid-state photomultiplier tubes
to convert light to electricity.
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In 3G scanners, very small and highly directional detectors are required. Ei-
ther solid-state detectors, or xenon gas detectors, as shown in fig(b). Xenon
gas detectors use compressed xenon gas in long, thin tubes, which when
ionized generate a current between an anode and cathode(maintained at a
high potential difference).

• Single-slice scanners:

– Area:1.0 mm*15.0mm

– Thick in 3G, thin in 4G and EBCT

• Multi-slice scanners:

– Area: 1.0mm * 1.25 mm

– Grouped in multiples of 1.25 mm

• Xenon gas detectors for less expensive scanners

5.3 CT Measurement Model

• From Polyenergetic to Monoenergetic model

Id =

∞∫
0

ES0(E)exp{−
d∫

0

µ(s;E)ds}dE = I0exp{−
d∫

0

µ(s; Ē)ds}

• Ē is effective energy, which is that energy which in a given material
will produce the same measured intensity from a monoenergetic source
as from the actual polyenergetic source.

Ē =

∞∫
0

ES0(E)dE

∞∫
0

S0(E)dE
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5.3.1 Line Integral

e.g., As shown below, one needs to calibrate the CT using a bucket of water,
get µw and get Ē.

we know that S0(E) =
N0δ(E − Ē)

A∆t
and

Id =

∞∫
0

ES0(E)exp{−
d∫

0

µ(s;E)ds}dE

=

∞∫
0

E
N0δ(E − Ē)

A∆t
exp{−

d∫
0

µ(s;E)ds}dE

=
N0Ē

A∆t
exp{−

d∫
0

µ(s;E)ds}

= I0exp{−
d∫

0

µ(s;E)ds}

Rearrange the above equation, we have

−lnId
I0

= −
d∫

0

µ(s;E)ds = gd
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which is a line integral of the linear attenuation coefficient at the effective
energy. This is the basic measurement of CT. This requires calibration
measurement of I0.

5.4 CT Numbers

In order to compare data from different scanners, which may have different x-
ray sources and hence different effective energies, CT numbers are computed
from the measured linear attenuation coefficients at each pixel.
Theory: Different CT scanners have different x-ray tubes, which in turn
have different effective energies.Thus, the exact same object will produce
different numerical values of µ on different sacnners. Worse, since the x-ray
tube on a busy CT scanner will produce a different scan of the same object
in successive years, which is not a desirable situation.

• Consistency across CT scanners desired

• CT number is defined as:

h = 1000× µ− µwater
µwater

• h has Hounsfield units (HU)

• Usually rounded or truncated to nearest integer

• Range:-1000 to about 3000

– -1000-air(µ = 0 in air)

– 3000-bone

– 4000-metal

5.4.1 Describing Lines

• Possible descriptions of lines:

– functional: y = ax+ b

– parametric form(forward problem): x(s), y(s)

– set form(inverse problem): L = {(x, y)|a property}

• Critique:

– Functional: what about vertical lines??

– Parametric: good for model of process

– Set: good for theory of reconstruction
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5.4.2 Line Parameters and Picture of a line

• Described by:

– Orientation of angle, θ

– Lateral translation or postion, l

• Written as L(l, θ)

L(l, θ) = {(x, y)|(x, y) are on the line with position l and angle θ}

5.4.3 Line Integral: parametric form

Question: What is integral of f(x, y) on L(l, θ)?
Step 1: Parameterize L(l, θ)

#»p (s) = l #»w + s #   »w⊥

=

[
x(s)
y(s)

]
=

[
lcosθ − ssinθ
lsinθ + scosθ

]
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Step 2: Integrate f(x, y) over parameter s

g(l, θ) =

∞∫
−∞

f(x(s), y(s))ds

A line in the plane

L(l, θ) = {(x, y)|xcosθ + ysinθ = l}

Also, δ(xcosθ + ysinθ − l) means that everything else is equal to 0,except
on the line - ”i’m on the line”.

5.4.4 Line Integral: set form

• Integrate over whole plane; non-zero only on L(l, θ)

• Key is sifting property

q(l) =

∞∫
−∞

q(l′)δ(l′ − l)dl′

• Use line impulse on L(l, θ)

g(l, θ) =

∞∫
−∞

∞∫
−∞

f(x, y)δ(xcosθ + ysinθ − l)dxdy

5.4.5 Physical meanings of f(x, y) and g(x, y)

• Recall monoenergetic model:

Id = I0exp{−
d∫

0

µ(s; Ē)ds}

• Rearrange:

g(l, θ) = −lnId
I0

=

d∫
0

µ(x(s), y(s); Ē)ds

• Relationship is:
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– f(x, y) = µ(x, y; Ē)

– g(l, θ) = −lnId
I0

5.4.6 What is g(l, θ)?

• Fix l and θ: line integral of f(x, y)

• Fix θ only: projecton of f(x, y) at angle θ

• Function of θ and l:g(l, θ) is the Radon transform of f(x, y)

g(l, θ) = R{f(x, y)}
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• An inverse transform

f(x, y) = R−1{g(l, θ)}

5.4.7 Sinogram

• CT data acquired for collection of l and θ

• CT scanners acquires a sinogram

5.4.8 Backprojection(smearing back)

• Goal: find f(x, y) from g(l, θ)

• Strategy: ”smear” g(l, θ) back into plane

• Formally:
bθ(x, y) = g(xcosθ + ysinθ, θ)

• bθ(x, y) is a laminar image
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5.4.9 Backprojection summation

”add up” all the backprojection images:

fb(x, y) =

π∫
0

bθ(x, y)dθ

=

π∫
0

g(xcosθ + ysinθ, θ)dθ

=

π∫
0

[g(l, θ)l=xcosθ+ysinθ]dθ

5.4.10 Properties of Laminogram

• ”Bright spots” tend to reinforce

• Problem” fb(x, y) 6= f(x, y)
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5.5 Projection-Slice Theorem

g(l, θ) is a projection. Taking the 1-D fourier transfer of it yields

G(ρ, θ) = F1{g(l, θ)} =

∞∫
−∞

g(l, θ)e−j2πρldl

=

∞∫
−∞

∞∫
−∞

∞∫
−∞

f(x, y)δ(xcosθ + ysinθ − l)dxdye−j2πρldl

=

∞∫
−∞

∞∫
−∞

f(x, y)

∞∫
−∞

δ(xcosθ + ysinθ − l)e−j2πρldldxdy

=

∞∫
−∞

∞∫
−∞

f(x, y)e−j2πl(xcosθ+ysinθ)dxdy

=

∞∫
−∞

∞∫
−∞

f(x, y)e−j2π(xρcosθ+yρsinθ)dxdy

= F (ρcosθ, ρsinθ)

Note that (ρcosθ, ρsinθ) = ρ #»w, and #»w = (cosθ, sinθ), which is the same in
the frequency domain.
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5.5.1 Illustration of Projection-Slice Theorem

A projection in spatial domain ⇔ a slice in fourier domain.

5.6 Exact Reconstruction Formulas

• Fourier reconstruction:

f(x, y) = F−1
2D{G(ρ, θ)}

• Filtered backprojection:

f(x, y) =

π∫
0

[

∞∫
−∞

|ρ|G(ρ, θ)e+j2πρldρ]l=xcosθ+ysinθdθ

– |ρ| is actually a ramp filter

– ramp filter, c(l) = F−1{|ρ|}, but this is actually not the actual
ramp filter, which to be discovered soon.

Proof: need to use projection slice theorem and to switch to polar
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coordinates, where u = ρcosθ and v = ρsinθ

f(x, y) = F−1{F (u, v)} =

∞∫
−∞

∞∫
−∞

F (u, v)e+j2π(xu+yv)dudv

=

2π∫
0

∞∫
0

F (ρcosθ, ρsinθ)e+j2π(xρcosθ+yρsinθ)ρdρdθ

=

2π∫
0

∞∫
0

G(ρ, θ)e+j2π(xρcosθ+yρsinθ)ρdρdθ

Now need to adjust the limits to cover the f(x, y) that we need to
cover, which ρ is from −∞ to ∞ and θ=[0, π]. See problem 6.15 for
the details.

• Convolution backprojection:

f(x, y) =

π∫
0

[c(l) ∗ g(l, θ)]l=xcosθ+ysinθdθ

=

π∫
0

∞∫
−∞

g(l, θ)]c(xcosθ + ysinθ − l)dldθ

where,c(l) = F−1{|ρ|} Proof:

f̂(x, y) =

π∫
0

[

∞∫
−∞

|ρ|G(ρ, θ)W (ρ)e+j2πρldρ]l=xcosθ+ysinθdθ

=

π∫
0

[c(l) ∗ g(l, θ)]l=xcosθ+ysinθdθ

where the actual ramp filter is c̃(l) = F−1{|ρ|W (ρ)}
e.g., the simplest window function is W (ρ) = rect(

ρ

2ρ0
)

Below is a picture showing that ”chop off” capability of |ρ|W (ρ)
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5.6.1 Convolution, Backprojection, and Summation

Step 1: Convolution

• Convolve every projection with c(l)

• the horizontal direction in a sinogram

Step 2: Backprojection

• 1D projection ⇒ 2D laminar function

Step 3: Summation

• Accumulate sum of backprojection images
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5.7 Factors Affecting CT Resolution

• Detector width ∼ area detectors

• detector indicator function = s(l)

• approximate CBP:

f(x, y) =

π∫
0

[

∞∫
−∞

|ρ|G(ρ, θ)S(ρ)e+j2πρldρ]l=xcosθ+ysinθdθ

where S(ρ) = F(s(l)), and S(ρ) is a sinc function
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5.7.1 Blurry Reconstruction

• Blurry projection:

ĝ(l, θ) = g(l, θ) ∗ s(l) ∗ w(l)

= g(l, θ) ∗ h̃(l)

• What is reconstructed image?

f̂(x, y) = R−1{g(l, θ) ∗ h̃(l)}

• Radon transform convolution theorem

R{f ∗2 h} = R{f} ∗1 R{h}

OR
f ∗2 h = R−1{R{f} ∗1 R{h}}

Use the Radon transform property and let g(l, θ) = R{f}, f(x, y) and h̃(l) =
R{h}, h(x, y), we will derive the following results
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5.7.2 CT Impulse Response Function

• Leads to
f̂(x, y) = f(x, y) ∗2 h(x, y)

where,
h(x, y) = R−1{h̃(l)}

• Fourier transform of h̃(l)

H̃(ρ) = F1{h̃(l)} = S(ρ)W (ρ)

which is independent of θ

• Therefore, H(u, v) is circularly symmetric
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5.7.3 PSF given by Hankel Transform

• PSF is circularly symmetric and given by

h(r) = H−1{S(ρ)W (ρ)}

• Reconstructed image given by

f̂(x, y) = f(x, y) ∗ h(r)

e.g. given detector width d, W (ρ) rect with ρ0 be the highest frequency and

ρ0 >>
1

d
, what is the PSF?

soln: s(l) = rect(
l

d
)↔ S(ρ) = dsinc(dρ) and W (ρ) = rect(

ρ

2ρ0
)

So we can ignore W (ρ) and now ĥ(l) = s(l), therefore H(q) = S(q) =
dsinc(dq).
Now we need to find the inverse Hankel transform of H(q).
We know that

sinc(r)↔ 2rect(q)

π
√

1− 4q2

Two problems: 1. q is in frequency domain. 2 It is scaled by d.
Recall the scaling property of Hankel transform

H{f(ax)} =
1

a2
F (

q

a
)

Use this property, we have

2drect(
r

d
)

d2π

√
1− 4(

r

d
)2

↔ dsinc(dq)

Therefore,

h(r) =
2rect(

r

d
)

π
√
d2 − 4r2
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5.8 Noise in CT Measurements

• Basic measurement is the line integral:

gi,j = −ln(
Nij

N0
)

– Nij is the mean counts for ith detector and jth angle

– line Lij

– angel i

– position j

• Noise is in Poisson random variable Nij

– mean N̄ij

– variance N̄ij

5.8.1 Functions of Random Variables in CT

• It follows that gij is a random variable

ḡij ≈ ln(
N0

N̄ij
)

V ar(gij) ≈
1

N̄ij

• û(x, y) is approximate reconstruction

• It follows that û(x, y) is a random variable

• What are the mean and variance of û(x, y)?
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5.8.2 CBP Approximation

• Convolution Backprojection(CBP):

u(x, y) =

π∫
0

∞∫
−∞

g(l, θ)c(xcosθ + ysinθ − l)dldθ

• Approximations

– M angles; ∆θ = π/M

– N+1 detectors; ∆l = T

– c̃(l) ≈ c(l)

• Discrete CBP:

û(x, y) = (
π

M
)
M∑
j=1

T

N/2∑
i=−N/2

g(iT, jπ/M)c̃(xcosθj + ysinθj − iT )

• Approximations:

– N̄ij is mean for i-th detector and j-th angle

– Nij is independent for different measurements

– N̄ij = N̄ , an ”object uniformity” assumption

– c̃(l) is created using rectangular window W (ρ) with cutoff ρ0

5.9 Conclusions

Since gij are assumed to be independent random variables, the variance of
the sum is the sum of the variances, given by

σ2(x, y) = var[µ̂(x, y)]

=
π2T 2

M2

M∑
j=1

N/2∑
i=−N/2

var[gij ][c(xcosθj + ysinθj − iT )]2

=
π2T 2

M2

M∑
j=1

N/2∑
i=−N/2

1

N̄ij
[c(xcosθj + ysinθj − iT )]2
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To proceed, we make a rather drastic approximation: N̄ij = N̄ . That the
mean number of detected photons is a constant is clearly false for nearly
all objects; however, by using this approximation, we can develop some im-
portant relationships that are otherwise obscured in the summations. Using
the approximation,

σ2(x, y) = σ2
µ =

π2T 2

M2N̄

M∑
j=1

N/2∑
i=−N/2

[c(xcosθj + ysinθj − iT )]2

For large N and M, we may make the approximation that discrete is close
to continuous

π

M

M∑
j=1

T
N∑
i=1

[c(xcosθj + ysinθi − iT )]2 ≈
pi∫

0

∞∫
−∞

[c(xcosθ + ysinθ − l)]2dldθ

= π

∞∫
−∞

[c(l)]2dl

= π

∞∫
−∞

[C(ρ)]2dρ

= π

∞∫
−∞

[W (ρ)|ρ|]2dρ = π

ρ0∫
−ρ0

ρ2dρ =
2πρ3

0

3

Thus, for a rectangular windowed ramp filter and the approximation N̄ij =
N̄ , the reconstructed image variance is independent of (x,y), and is given by

σ2
µ ≈

2π2ρ3
0

3

1

M

1

N̄/T

5.10 Signal-to-noise Ratio

• Definition(usual)

SNR =
Cµ̄

σ µ̂

• After substitution:

SRN =
Cµ̄

π

√
3MN̄

2Tρ3
0
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5.11 SNR in a Good Design

• What should be?

• Let detector width= d

• ρ0 should be anti-aliasing filter:

ρ0 =
k

d

where k ≈ 1

• In 3G CT scanner d = T

• Then
SNR ≈ 0.4kCµ̄d

√
N̄M

5.12 SNR in Fan-Beam Case

SNR = 0.4kCµ̄L

√
N̄fM

D3

where, N̄f is mean photon count per fan, and D is number of detectors, and
L is length of detector array.
If you pay attention, you will find out that in 3G fan-beam systems, increas-
ing D decreases SNR. The reason for this is because this analysis ignores
resolution.

5.13 Rule of Thumb

• Variables:

– D is number of detectors

– M is number of angles

– J2 is number of pixels in image

• Very approximate ”rule”:

D ≈M ≈ J

• Typical numbers:

– Low: D ≈ 700, M ≈ 1000, J ≈ 512

– High:D ≈ 900, M ≈ 1600, J ≈ 1024
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5.14 Fan Beam Geometry
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6 Physics of Nuclear Medicine

6.1 Nomenclature

• Atomic number: Z, number of protons in nucleus

• Mass number: A, number of nucleons in nucleus

• Nuclide: unique combination of protons and neutrons in nucleus

• Radionuclide: a nuclide that is radioactive

• Isotope: atoms with same Z, different A

• Isobar: atoms with same A, different Z

6.2 Mass Defect and Binding Energy

• Mass defect = Mass of constituents of atom - actual mass of atom

• unified mass unit, u, = 1/12 mass of C-12 atom

• Binding energy = mass defect × c2

• One u is equivalent to 931 MeV

• Generally, more massive atom, more binding energy
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Now consider the following example:
A = A0e

−λt, average behavior
Now consider a small interval ∆t (A0 is not changing),we have
∆tA = ∆tA0e

−λ∆t

Use Taylor series ex ∼= (1 + x+
x2

2!
+ ...)

N = N0e
−λ∆t ≈ N0(1− λ∆t) = N0 −N0λ∆t

Note that N0λ∆t is the number of disintegrations in ∆t, which can be seen
as the probability of having one disintegration from N0 radioatoms in time
interval ∆t, which is equal to the expected value(mean value). Also note
that this is a Poisson random variable.

Let parameter a = N0λt, then Prob[∆N = k] =
ake−a

k!
, substitute a in, we

get the following expression:

Prob[∆N = k] =
(N0λt)

ke−N0λt

k!

Note: ∆N= disintegrations you get over ∆t
e.g., consider k = 1, and a small ∆t, we have

Prob[∆N = 1] =
(N0λ∆t)1e−N0λt

1
≈ N0λt

• ∆t has units of time

• N0λ has units of frequency dps

• Poisson rate = radioactivity

e.g., N0 = 1, Probability of decay in ∆t:

Prob[∆N = 1] ≈ λ∆t

Note: λ = Probability of a single radioatom decaying in ∆t time.

6.3 Radiotracers

• Gamma Ray Emitters:
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– Iodine-123(13.3h, 159 keV)

– Iodine-131(8.04d, 364 keV)

– Iodine-125(60d, 35 keV) Not desirable

– Thallium-201 (73h, 135 keV)

– Technetium-99m (6h, 150 keV)

• Positron Emitters:

– Fluorine-18 (110 min, 202 keV)

– Oxygen-15 (2 min, 696 keV)

7 Planar Scintigraphy

Broad Purpose

• Gamma emitter in body; where is it?

• Planar camera; like radiography

• 2D projection of 3D concentration

7.1 Gallium-67 scan

A gallium scan is a type of nuclear medicine study that uses a radioactive
tracer to obtain images of a specific type of tissue, or disease state of tissue.
Gallium-67 is imaged with a gamma camera, with a SPECT camera, or with
SPECT/CT hybrid machines. Gallium is taken up by tumors, inflammation,
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and both acute and chronic infection, allowing these pathological processes
to be imaged by nuclear scan techniques. Gallium is particularly useful
in imaging osteomyelitis that involves the spine, and in imaging older and
chronic infections that may be the cause of a fever of unknown origin

• Gallium-67 citrate (metastatic tumors, focal site of infection)

• half-life is 78 hr

• 93 keV (40 percent), 184 keV (24 percent), 296 keV (22 percent), and
388 keV (7 percent)

• 150-220 MBq (4-6 mCi) intravenously

• 48 hr after injection, about 75 percent remains in body

• equally distributed among the liver, bone and bone marrow, and soft
tissues.

• Scintigrams 24 to 72 hrs after injection

7.2 Gamma/Anger Camera Components
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7.2.1 Collimators

7.2.2 Detector

• Single large-are Nal(TI) crystal

• Diameters:

– 30-50 cm in diameter

– Mobile units: 30 cm

– Fixed scanners: 50 cm

• Thickness:

– High-E emitters: 1.25 cm thick

– Low-E emitters: 6-8 mm thick
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7.2.3 Photomultiplier Tube Array

7.2.4 Photomultiplier Tube

Photomultipliers are constructed from a glass envelope with a high vacuum
inside, which houses a photocathode, several dynodes, and an anode. Inci-
dent photons strike the photocathode material, which is present as a thin
deposit on the entry window of the device, with electrons being produced
as a consequence of the photoelectric effect. These electrons are directed
by the focusing electrode toward the electron multiplier, where electrons are
multiplied by the process of secondary emission.

The electron multiplier consists of a number of electrodes called dyn-
odes. Each dynode is held at a more positive voltage, by 100 volts, than the
previous one. A primary electron leaves the photocathode with the energy
of the incoming photon, or about 3 eV for ”blue” photons, minus the work
function of the photocathode. As a group of primary electrons, created by
the arrival of a group of initial photons, moves toward the first dynode they
are accelerated by the electric field. They each arrive with ≈100 eV kinetic
energy imparted by the potential difference. Upon striking the first dyn-
ode, more low energy electrons are emitted, and these electrons in turn are
accelerated toward the second dynode. The geometry of the dynode chain
is such that a cascade occurs with an ever-increasing number of electrons
being produced at each stage. For example, if at each stage an average of
4 new electrons are produced for each incoming electron, and if there are
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12 dynode stages, then at the last stage one expects for each primary elec-
tron about 512 ≈ 108 electrons. This large number of electrons reaching the
last stage, called the anode, results in a sharp current pulse that is easily
detectable, signaling the arrival of the photon at the photocathode about a
nanosecond earlier.

7.2.5 Pulse Height

• Response to single gamma ray photon

• PMT responses, ak, k= 1,......,k

• Total response of camera is Z-pulse

Z =
K∑
k=1

ak

• Height of Z pulse is important

– Can remove Compton photons

– Can reject multiple hits
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7.3 Pulse Height Analysis

Note: Discriminator circuit rejects non-photopeak events.

7.3.1 Gamma Camera Photon Detection

Process:
1. Gamma ray photon hits scintillator
2. Photon ”stopped” by photoelectric effect
3. Light flash detected by multiple PMTs

96



Ye Li 580.472 Class Notes: August 28, 2014 - Dec 15, 2014

7.3.2 Gamma Camera Event Positioning

• PMT height (Z-height) is related to event distance

• Center of mass is approximate position

• Compton scattering happens and leaves a compton e− inside the crys-
tal.

• θ = 180o, namely backscattering, deposits the most energy in the
crystal

7.3.3 Event Positioning Logic

• Tube centers at (xk, yk), k=1,...,K

• Center of mass of pulse responses is

X =
1

Z

K∑
k=1

xkak

Y =
1

Z

K∑
k=1

ykak

• This is pulse location

7.4 Acquisition Modes

• How to use the camera to make images?

– List mode

– Static frame mode
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– Dynamic frame mode

– Multiple-gated acquisition

– Whole body mode

• List mode

• Static Frame Mode

• Dynamic Frame Mode

• Multiple Gated Acquisition
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• Whole Body Mode

7.5 Imaging Geometry and Assumption

• Lines defined by (parallel) collimator holes

• Ignore Compton scattering

• Radioactivity concentration : f(x,y,z)

• Monoenergetic photons, energy E

Now consider N number of radionuclides in a small volume V . The radioac-

tivity is equal to A = λN , and radioactivity concentration is
A

V
=
λN

V
=

f(x, y, z), which is the basic quantity that is observed.
Differential radioactivity:

dA(x, y, z) = f(x, y, z)dxdydz
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Differential photon fluence rate:

dφ(xd, yd) =
dA

4πr2
× exp{−

r∫
0

µ(s, E)ds}

Note that the E above is the energy of gamma ray (one energy).

7.5.1 Photon Fluence in Collimator Hole

Photon Fluence in Collimator Hole at (xd, yd)

• Depth-dependent effects from:

– inverse square law, and

– Object-dependent attenuation
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Assume f(x, y, z) is constant for fixed z in tube.

φ(xd, yd) =

∫ ∫
tube

∫
z

f(xd, yd, z)dxdydz

4πr2
exp{−

r∫
0

µ(s, E)ds}

= Ah

0∫
−∞

f(xd, yd, z)

4πz2
exp{−

0∫
z

µ(x, y, z′;E)dz′}dz

Note:
∫ ∫

tube dxdy = Ah, which is the area of collimator hole. µ is the
attenuation coefficient of body. Also, assume that µ is constant over the
plane for fixed z.

• Consequences:

– Near activity is brighter

– Front and back are different

7.6 Planar Sources

Given the size of a pixel being Ak, φ =
N

Ak∆t
and N = φAk∆t, and detected

mean pixel count for pixel k is:

n̄k = εTAkAh
fz0(xk, yk)

4πz2
0

exp{−
0∫

z0

µ(xk, yk, z
′;E)dz′}

• ε is detector efficiency

• Ak is area, size of pixel

• Ah is area of collimator hole

• T is observation time
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• Two terms attenuate desired result

– inverse square law: constant for (x,y)

– µ is not constant for (xk, yk)!!, which means it depends on (xk, yk)
position.

7.7 Collimator Resolution

• Collimator Resolution=FWHM=

RC(|z|) =
d

l
(l + b+ |z|)

• Gaussian approximation

hc(x, y; |z|) = exp{−4(x2 + y2)
ln2

R2
C(|z|)

}

• Planar source is blurred

φ(x, y) =
Ahfz0(x, y)

4πz2
0

× exp{−
0∫

z0

µ(x, y, z′;E)dz′} ∗ hc(x, y; |z0|)

7.8 Intrinsic Resolution

• Where did the x-ray photon hit?

– Compton in crystal spreads out light

– Crystal thickness

– Noise in light, PMTs, and electronics
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• Gaussian approximation

hI(x, y; |z|) = exp{−4(x2 + y2)
ln2

R2
I

}

• Planar source is further blurred

φ(x, y) =
Ahfz0(x, y)

4πz2
0

×exp{−
0∫

z0

µ(x, y, z′;E)dz′}∗hc(x, y; |z0|)∗hI(x, y)

7.9 Collimator Sensitivity

• Collimator Efficiency = Sensitivity=

ε = (
Kd2

l(d+ h)
)2

where K ≈ 0.25

• ε is the fraction of photons (on average) that pass through the colli-
mator for each emitted photon directed at the camera

7.10 Resolution vs. Sensitivity

7.11 Detector Efficiency

• Depends on crystal thickness

– thicker ⇒ more efficient
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– 100 percent at 100 keV; 10-20 percent at 511 keV

• Tradeoff:

– If Eγlow ⇒ use thinner crystal

– If Eγhigh⇒ use thicker crystal

– Higher Eγ , less abosorption in body

Consider N̄ photons are detected√
N̄

J2
=

√
N̄

J
= intrinsic SNR per pixel

7.12 Geometry and Nonuniformity

• Geometric distortion

– Pincushion distortion,which is the exact opposite of barrel dis-
tortion straight lines are curved outwards from the center.

– Barrel distortion

– wavy line distortion

• Image nonuniformity
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– Variation as much as 10 percent

– non-uniform detector efficiencies

– geometric distortions ⇒ ”hot spot”

– edge packing

7.13 Image SNR

• Suppose N̄ photons are detected

• Then intrinsic SNR of frame mode is:

SNR(intrinsic) =

√
N̄

J

where J2 is the number of pixels in image

• For similar areas of target and background:

C =
It − IB
IB

=
Nt −NB

NB

SNR =
Nt −NB√

NB

Nt −NB

NB

NB√
NB

= C
√
N̄B

7.14 Energy Resolution

• Energy resolution = FWHM of photopeak
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7.15 Pulse Pileup

• Pulse pileup = two simultaneous γ-rays

• Event rejected

– because of energy discrimination

– results in wasted photons

• cannot imporve image using larger dose

• instead, keep dose low and image longer

8 Emission Tomography

8.1 SPECT

8.1.1 SPECT Hardware

• Rotating gamma camera

• Each ”row” is separate slice

• Multiple heads (2 or 3 ) are common

• High-performance cameras used

– ≤ 1 percent nonuniformity required

– need good mechanical alignment
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8.1.2 SPECT Coordinate System

”Home position”
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8.1.3 Multiple Head Tradeoffs

8.2 Basic Imaging Equation

• Parallel hole collimators

• Camera fixed distance R from origin (origin in patient)

• From planar scintigraphy, we have

φ(xd, yd) = Ah

0∫
−∞

f(xd, yd, z)

4πz2
exp{−

0∫
z

µ(x, y, z′;E)dz′}dz

• Imaging equation in ”home” position:

φ(z, l) = Ah

R∫
−∞

f(x, y, z)

4π(y −R)2
exp{−

R∫
y

µ(x, y′, z;E)dy′}dy

Note that φ is in units of
number of photons

area× time
• For a fixed z, we have
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where, Line L is described by

L(l, θ) = {(x, y)|xcosθ + ysinθ = l}

8.3 Tomographic Imaging Equation

n̄k(l, θ) =

R∫
−∞

εTAkAhf(x(s), y(s))

4π(s−R)2
exp{−

R∫
s

µ(x(s′), y(s′);E)ds′)}ds

• Two unknowns: f(x, y) and µ(x, y)

• Generally intractable ⇒

– Ignore attenuation(often done)

– assume constant

– measure and apply attenuation correction

8.4 Approximate SPECT Imaging Equation

• Bold approximations: ignore attenuation, inverse square law, and scale
factors:

n̄k(l, θ) = εTAkAh

∞∫
−∞

f(x(s), y(s))ds

• Define measurements as

g(l, θ) =
n̄k(l, θ)

εTAkAh

• Using line impulse:

g(l, θ) =

∞∫
−∞

∞∫
−∞

f(x, y)δ(xcosθ + ysinθ − l)dxdy

8.5 SPECT Reconstruction

• Use convolution backprojection

f(x, y) =

pi∫
0

∞∫
−∞

g(l, θ)c̃(xcosθ + ysinθ − l)dldθ

• Approximate ramp filter:

c̃(l) = F−1
1D{|ρ|W (ρ)}
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8.6 Approximate SPECT Attenuation Correction

• Suppose µ(x, y;E) is known

• Compute n̄k for artificial flood field fa(x, y) = 1

• Reconstruct image a(x, y) from computed n̄k

• Form attenuation corrected image from reconstructed image f(x, y):

fc(x, y) =
f(x, y)

a(x, y)

8.7 Myocardial Perfusion SPECT Dose

8.8 PET Principles

• Positron emitters

• Positron annihilation:

– short distance from emission

– produces two 511 keV gamma rays

– gamma rays 180 degrees opposite directions

• Principle: detect coincident gamma rays
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8.8.1 Annihilation Conincidence Detection (ACD)

• Event occurs if detections are conincident

• Time window is typically 2-20 ns

• 12 ns is common setting

• No detector collimation required

• Dual-head SPECT systems can be used
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8.8.2 PET Detector Block

• Crystals plus PMTs

• BGO = Bismuth Germanate

• BGO has 3x stopping power than NaI(TI)

8.8.3 Typical PET Detector Arrangement

• 2mm × 2mm elements

• 8 by 8 elements per blocks; 2 by 2 PMTs per block

• 48 blocks per major ring; 3 major rings

• ⇒ 24 detector rings; 384 detectors per ring

• Rightarrow 8216 crystals total
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8.8.4 2-D or 3-D PET Geometry

• Septa or no septa between rings?

• Septa: ⇒ multiple 2-D PET rings, which is like reconstruction in 2-D
CT

• No septa: ⇒ 3-D PET, which needs 3-D reconstruction algorithms

• We focus on 2-D PET

2-D PET Geometry
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Lines of Response (LORs)
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8.9 PET Imaging Equation

A differential activity

dA(x, y, z) = f(x, y, z)dxdydz

Ignore attenuation

dφ(xd, yd) =
dA

4πR2

Attenuation

dφ(xd, yd) =
dA

4πR2
exp{−

R∫
−R

µ(s′;E)ds′}

Now move the source

dφ(xd, yd) =
dA

4π(R+ |s|)2
exp{−

R∫
−R

µ(s′;E)ds′}
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Assume: f(x,y,z)=concentrations along vertical direction
Ah is area of the detector tube ≈ area detector face
Note: Ãh ≤ Ah (because at the top of the tube, it gets less and less counts)

φ(xd, yd) = Ãh

R∫
−R

f(x(s), y(s))

4π(R+ |s|)2
exp{−

R∫
−R

µ(s′;E)ds′}ds

The attenuation term doesn’t depend on s, the location of annihi-
lation

n̄(l, θ) = AhTεÃh

R∫
−R

f(x(s), y(s))

4πR2
exp{−

R∫
−R

µ(x(s′), y(s′);E)ds′}ds

Unknowns µ(x, y) and f(x, y) separate Now let k = AhTεÃh and ignore
inverse square term.

n̄(l, θ) = k

R∫
−R

f(x(s), y(s))dsexp{−
R∫
−R

µ(x(s′), y(s′);E)ds′}

Define gc(l, θ), attenuation corrected sinogram

gc(l, θ) =
n̄(l, θ)

k
=

R∫
−R

f(x(s), y(s))dsexp{−
R∫
−R

µ(x(s′), y(s′);E)ds′}

µ(x, y) found from CT

8.10 PET Reconstruction

• Final approximate imaging equation

gc(l, θ) =

R∫
−R

f(x(s), y(s))ds
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• Convolution backprojection yields

f̂(x, y) =

π∫
0

∞∫
−∞

gc(l, θ)c̃(xcosθ + ysinθ − l)dldθ

8.11 Iterative Reconstruction Concept

• Sequence of estimated cross sections:

f (0)(x, y), f (1)(x, y), ...

• Computed measurements

g(0)(l, θ), g(1)(l, θ), ...

• Compare computed measurements to actual measurements g(l, θ) in
order to update estimated cross section

8.11.1 Digital Representation of Cross Section

• Image Values: fj , j = 1, ...,m

• Pixel indicator function: pj(x, y), j = 1, ...,m

• Continuous image representation:

f(x, y) =

m∑
j=1

fjpj(x, y)

• In emission tomography, f(x, y) is activity concentration
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8.11.2 Computed Measurements in SPECT and PET

• In SPECT:

g(l, θ) =
n̄k(l, θ)

TAkAhε

• In PET:

g(l, θ) =
n̄(l, θ)

k

where k = AhTεÃh

• Substitute f(x, y) into imaging equations to yield

gi =
m∑
j=1

aijfj

where i-ith line, j-jthe pixel

• Vector/Matrix Form
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Note: vector f = entire image pixel values. ai represents the contribution
from the ith line and mth pixel. g is a vector

ĝ = Af̂ + η

If no η, f̂ = A−1ĝ, and
f̂ = (ATA)−1AT ĝ

8.12 Algebraic Reconstruction Technique(ART)

• Iterative solution: for k=0,1,...

f̂k = f̂k−1 − aTi f̂
k−1 − gi
aTi ai

• gi is true measurement

• aTi f̂k−1 is forward operator

• compare forward projection to measurements by subtraction

8.13 Maximum Likelihood Expectation Maximization(ML-
EM)

• Directly express photon counts at each detector ,and observe n counts.
n is a Poisson variable:

n̄i(f) = aTi f + r̄i

where r̄i represents random and scattered counts

• Form likelihood assuming pixels are independent

L(f) =

n∑
i=1

[nilnn̄i(f)− n̄i(f)]

8.14 Resolution in Emission Tomography

• Approximation:
f̂(x, y) = f(x, y) ∗ h(r)

• In SPECT, h(r) includes:

– Collimator and intrinsic resolutions
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– ramp filter window effect

• In PET, h(r) includes:

– the positron range function

– detector width effects

– ramp filter window effect

PET Events

8.14.1 Conincidence Timing

• Three classes of events

– true coincidence

– scattered coincidence

– random coincidence

• Sensitivity in PET, measures capability of system to detect ”trues”
and rejects ”randoms”

9 Ultrasound Physics

9.1 3-D Wave Equation

• Acoustic pressure: p(x, y, z, t)
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• 3-D wave equation

∇2p(x, y, z, t) =
1

c2
ptt(x, y, z, t)

where ∇2p = pxx + pyy + pzz
and c is the speed of sound

• since general solution is very complicated, we go after plane waves and
spherical waves

9.2 Plane Waves

• Plane wave in z direction:

p(z, t) = p(x, y, z, t)

• Plane wave equation:

pzz(z, t) =
1

c2
ptt(z, t)

• General solution:

p(z, t) = φf (t− c−1z) + φb(t+ c−1z)

9.2.1 Harmonic Waves

• Harmonic plane wave

p(z, t) = cos[k(z − ct)]

• Definitions:

– wavenumber:k

– frequency:f = kc/2π

– period; T = 1/f

– wavelength: λ = c/f
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9.2.2 Spherical Waves

• 3-D spherical wave:
p(r, t) = p(x, y, z, t)

where r =
√
x2 + y2 + z2

• Spherical wave equation:

1

r

∂2

∂r2
(rp) =

1

c2

∂2p

∂t2

• General solution(outward expanding):

p(r, t) =
1

r
φ0(t− c−1r)

9.2.3 Characteristic Impedance

• Characteristic Impedance
Z = ρc

where ρ is density

• Why impedance?
p = Zv

where v is particle velocity v 6= c

– p is like voltage

– v is like current

9.2.4 Acoustic Energy

• kinetic energy density:

wk =
1

2
ρ0v

2

• Potential energy density:

wp =
1

2
κp2

where κ is compressibility

• Acoustic energy density:

w = wk + wp
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9.2.5 Acoustic Power

• Acoustic Intensity:

I = pv =
p2

Z
(like electrical power p=vi)

• Propagation of acoustic power(plane wave):

∂I

∂z
+
∂w

∂z
= 0

9.2.6 Reflection and Refraction

Snell’s Laws:
θr = θi

sinθi
sinθt

=
c1

c2

θcritical = sin−1(
c1

c2
)

for c2 ≥ c1

e.g., Given the following setup, what is the reflected intensity?
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Soln: We know that R =
Z2 − Z1

Z2 + Z1
, RI =

Ir
Ii

, I =
p2

z

Also, Ir =
p2
r

Z1
, Ii =

p2
i

Z1
.

Plug them them in, we get RI =
p2
r

p2
i

= R2

Plug in the numbers, RI = 0.103, about 10 percent, which is reflected back.

9.2.7 Reflected and Refracted Waves

• Pressure reflectivity:

R =
pr
pi

=
Z2cosθi − Z1cosθt
Z2cosθi + Z1cosθt

• Pressure transmittivity

T =
pt
pi

=
2Z2cosθi

Z2cosθi + Z1cosθt

• At normal incidence:

R =
Z2 − Z1

Z2 + Z1

9.2.8 Attenuation and Absorption

• Phenomenological model:

p(z, t) = A0e
−µazf(t− c−1z)

• µa is amplitude attenuation factor [cm−1]

• Absorption coefficient: α = 20(log10e)µa[dB/cm]

• In range 1MHz ≤ f ≤ 10MHz

a ≈ af

and
a ≈ 1dB/cm−MHz

e.g.,known A0 at z = 0, we have A0e
−µ0z at z

20log10
A0e

−µ0z

A0
= 20loge−µ0z

= 20(−µ0z)log10e

= −(20µ0log10e)z
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9.2.9 Scattering

• Particle at (0,0,d), reflection coefficient R

• Generates spherical wave

ps(r, t) =
Re−µarA0e

−µad

r
f(t− c−1d− c−1r)

• c−1d term is the time delay for the wave to get to d.

• r is distance from (0,0,d)

9.2.10 Field Patterns

• Geometric approximation

• Diffraction formulation

• Simple model:
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Beam width:

W (z) =

{
D if z ≤ D2/λ

λz/D if z > D2/λ

9.2.11 Far Field=Fraunhofer Pattern

• Transducer face indicator function:

s(x, y) =

{
1 if (x, y) in face

0 if otherwise

• Far field pattern:

q(x, y, z) ≈ 1

z
ejk(x2+y2)/2zS(

x

λz
,
y

λz
)

e.g., a 1-D example: s(x) = rect(
x

D
) and S(u) = Dsinc(uD)

S(
x

λz
) = Dsinc(

xD

λz
), where u =

x

λz
For a sinc function, the first zero occurs at
xD

λz
= 1, ⇒ x =

λz

D
= W (z) at far field!!

• S(u, v) is Fourier transform of s(x, y)

• Pulse-echo sensitivity: q2(x, y, z)

9.2.12 Focusing

• Focal length field pattern:

q(x, y, z) ≈ 1

d
ejk(x2+y2)/2dS(

x

λd
,
y

λd
)
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10 Ultrasound Imaging

10.1 Ultrasound System Components

Block Diagram
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10.2 Transducers

• Lead Zirconate Titantate(PZT)

– piezoelectric crystal

– good transmit and receive efficiencies

– different shapes:
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10.2.1 Piezoelectric Effect

10.2.2 Resonance

• Shock excite yields resonant pulse

• Resonant frequency:

fT =
cT
2dt

• Damps out after 3-5 cycles
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10.2.3 Electronic Scanner

• Linear arrays:

– 64-256 elements, fire in groups

– each element ≈ 2 mm by 10 mm

• Phased arrays:

– 30-128 elements; electronically streered

– each element ≈ 0.2 mm by 8 mm

10.3 Shock Excitation

c ∼= 1500m/s = 1.5mm/us

c = λf ⇒ λ =
c

f
= cT

@ 5MHz T =
1

f
=

1

5MHz
= 0.2us

λ = cT =
1.5mm

us
× 0.2us = 0.3mm

If the pulse has 5 cycles, then its duration = 1.5 mm and range resolution
= 1.5 mm.
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10.3.1 A-mode Display

The Range Equation

z =
ct

2

10.3.2 Depth of Penetration

Suppose it travels d distance, the loss is

L = dα in [dB]

For example, if the system’s sensitivity is L ≈ 80dB, after d ≥ L

α
the echo

is invisible.

dp =
L

2α
, recall that α = af ; a ≈ 1 ⇒ dp =

L

2af

The higher the frequency, the higher the absorption, the lower the depth of
penetration.

e.g., L = 80dB, f = 2MHz, what is the depth of penetration?
Soln:

dp =
L

2af
=

80dB

2× 1dB

cm×MHz
2MHz

= 20cm
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10.3.3 Pulse Repetition Time

• The time that needs to wait till the very last pulse gets reflected back
to fire a new pulse.

TR =
2dp
c
≈ L

afc

• Pulse repetition frequency/rate:

fR =
afc

L
=

1

TR

e.g., fR = 3850Hz, number of scan line =N:one needs to go through all the
scan lines to get a new image

Frame rate(number of pictures you see per second), fF =
fR
N

, suppose

N=256.
3850Hz

256
≈ 15Hz = fF

which is not fast enough ⇒ aliasing (frame rate on a motion module is
approximately 24 Hz)

10.4 Phased Arrays: Transmit Steering
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r0 =
√
x2
t + z2

t and ri =
√
z2
t + (id− xf )2

Delay is

ti =
r0 − ri
c

=

√
x2
t + z2

t −
√
z2
t + (id− xf )2

c

• echo from T0: t0 =
r0 + r0

c

• what about Ti: ti =
r0 + ri
c

• Time difference: τi = t0−ti =
2r0

c
−(r0 + ri)

c
⇒ τi =

r0 + ri
c

=

√
x2
t + z2

t −
√
z2
t + (id− xf )2

c
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10.5 Phased Arrays: Transmit Focussing

10.5.1 Dynamic Focusing

τi(t) =

√
x(t)2 + z(t)2 −

√
z(t)2 + (id− x(t))2

c

10.6 Imaging Equation

• Sinusoid cos(2πf0t)

• Phase deviation cos(2πf0t− φ)
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• Envelope n(t) = ne(t)cos(2πf0t− φ)

• Complex signal n(t) = ne(t)e
jφe−j2πf0t

• A complex envelope ne(t)e
jφ

• A complex signal e−j2πf0t

• n(t) = Re{n(t)}, RF signal

• ne(t) = |n(t)|, a mode signal
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