Multilayer perceptrons and backpropagation

Ye L1

These notes give a short description of the basic ideas of multilayer perceptrons and
backpropagation. It focus on answering the following questions: 1) Why are multiplayer
perceptrons better than single layer perceptrons? 2) What is the main difference between
multi-layer perceptrons and deep networks?

1 Multilayer Perceptrons

The idea of multilayer perceptron is to address the limitations of single layer perceptrons,
namely, it can only classify linearly separable data into binary classes (1, —1). A single layer
perceptron is a feed-forward network based on a threshold transfer function and has the
structure as shown in the figure below.

n

Output layer y = Z WX
i=1

1ify>0

Qutput=
utpu {—1 otherwise

Input layer

A multilayer perceptron is built on top of single layer percentrons. It uses the outputs of
the perceptrons at one layer as inputs to perceptrons at its next layer. Thus, many levels
can be specified and non-linear relationship between inputs and outputs can be modeled. A
multilayer perceptron differs from a single layer perceptron by two main ingredients: 1) a
soft thresholding function after each summation (linear combination of inputs) and 2) in-
troduction of hidden layers. Many people have tried to come up with explanations about
the hidden units but it is still unclear. However, one thing that we do know is that the
number of hidden units is related to the capacity of the perceptron. A sample structure of

a multilayer perceptron graph is given below.

Output layer

Hidden layer

Input layer

The red nodes in the graph represent the original part from the single layer perceptron that
we showed in the previous graph. When drawing the graph, I intentionally left the single
layer perceptron part unchanged so that we can better see what’s added to the new graph.
Basically, there two important points: 1) the newly introduced hidden nodes use/share the
same inputs with other hidden units at the same level/layer and 2) use of non-linear function
in calculation of the output at the hidden layer. With these features, almost any input-output
function can be modeled by a multilayer perceptron with enough hidden layers. Thus, the
multilayer perceptron is often preferred over the single layer perceptron in more sophisticated
data such as linear inseparable data, due to its ability to capture non-linearity.

2 Backpropagation

To put simple, backpropagation is to apply the chain rule many many times to calculate the
gradient of a loss function with respect to all the inputs (weights, input data) in the network.
Below is a simple network containing only 3 inputs and a single output and the question to
ask is: how much change there is on the final result if I change an input by A? In other
words, how would change in a affect f, which is the final result in the network shown below.
To answer this question, we need the partial derivative w.r.t that particular input, which is
% = 5. And, this simply means that an increase in a would increase f by an amount equal
to 5A (A here denotes the change in a itself). In general, positive gradient would positively
influence the loss (final result) and negative gradient would negatively influence the loss, by

the amount that’s equal to the gradient multiplied with A. In a real neural network or a
large computational circuit (imagine many many operations and inputs), we can think a as
a weight, wg, and b as an input, xy. In the update equation, if we want to decrease the loss
(always want to minimize the loss), all we need to do is simply update the weight by a tiny
bit in the opposite direction of its local partial gradient, i.e., decrease wy from -2 to -3 and
we would get a smaller f.

f=(axb)+c

For training a multilayer perceptron, we have to estimate the weights of the percenptron.
First we need the loss, namely an error function.

Output layer

Hidden layer

Input layer

For the multilayer perceptron shown above, the loss can be defined as:
E[wa V] = Z{yl - Z Vima<z wmn$n>}2

As explained in the first section, the update terms are the negative derivatives of the loss
with respect to the local parameters(weights) times a small change 9§, specified by learning
rate:

oF
A mn —)
w Do X
which is computed by the chain rule, and
oF
v, 9o X

which is computed directly as they are weights of the last layer.
By defining z, = o(>°, won®n), £ =>,(yi — >, Vimzm)?, we can write:

OF OFE 0z,

OWmn B 0% OWpnn,

where i—i = =2 (vi—>_,,(Vim#m))Vim and assume o is a sigmoid function whose derivative
is o(t)(1 — o(t)), then we have aaj:n = 2,0(), Wnnn){l — 0 (>, Wmn®n)}. So we have:

8?5” =2 Z(yi - Z(wmzm))mmxna(z W) {1 — J(Z W) }

and > .(yi — >, (Vim#m)) is the error at the output layer.

