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Abstract
Background: Radiotherapy (RT) combined with cetuximab is the standard
treatment for patients with inoperable head and neck cancers. Segmentation
of head and neck (H&N) tumors is a prerequisite for radiotherapy planning but
a time-consuming process. In recent years, deep convolutional neural networks
(DCNN) have become the de facto standard for automated image segmentation.
However, due to the expensive computational cost associated with enlarging
the field of view in DCNNs, their ability to model long-range dependency is
still limited, and this can result in sub-optimal segmentation performance for
objects with background context spanning over long distances. On the other
hand,Transformer models have demonstrated excellent capabilities in capturing
such long-range information in several semantic segmentation tasks performed
on medical images.
Purpose: Despite the impressive representation capacity of vision transformer
models, current vision transformer-based segmentation models still suffer from
inconsistent and incorrect dense predictions when fed with multi-modal input
data. We suspect that the power of their self -attention mechanism may be lim-
ited in extracting the complementary information that exists in multi-modal data.
To this end, we propose a novel segmentation model, debuted, Cross-modal
Swin Transformer (SwinCross), with cross-modal attention (CMA) module to
incorporate cross-modal feature extraction at multiple resolutions.
Methods: We propose a novel architecture for cross-modal 3D semantic seg-
mentation with two main components: (1) a cross-modal 3D Swin Transformer
for integrating information from multiple modalities (PET and CT), and (2) a
cross-modal shifted window attention block for learning complementary infor-
mation from the modalities. To evaluate the efficacy of our approach, we
conducted experiments and ablation studies on the HECKTOR 2021 challenge
dataset. We compared our method against nnU-Net (the backbone of the top-
5 methods in HECKTOR 2021) and other state-of -the-art transformer-based
models, including UNETR and Swin UNETR. The experiments employed a
five-fold cross-validation setup using PET and CT images.
Results: Empirical evidence demonstrates that our proposed method consis-
tently outperforms the comparative techniques. This success can be attributed
to the CMA module’s capacity to enhance inter-modality feature representa-
tions between PET and CT during head-and-neck tumor segmentation.Notably,
SwinCross consistently surpasses Swin UNETR across all five folds, showcas-
ing its proficiency in learning multi-modal feature representations at varying
resolutions through the cross-modal attention modules.
Conclusions: We introduced a cross-modal Swin Transformer for automat-
ing the delineation of head and neck tumors in PET and CT images.
Our model incorporates a cross-modality attention module, enabling the
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exchange of features between modalities at multiple resolutions. The experi-
mental results establish the superiority of our method in capturing improved
inter-modality correlations between PET and CT for head-and-neck tumor
segmentation. Furthermore, the proposed methodology holds applicability
to other semantic segmentation tasks involving different imaging modali-
ties like SPECT/CT or PET/MRI. Code:https://github.com/yli192/SwinCross_
CrossModalSwinTransformer_for_Medical_Image_Segmentation
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1 INTRODUCTION

Head and neck (H&N) cancers are among the most
common cancers worldwide,1 accounting for about 4%
of all cancers in the United States. FDG-PET and CT
imaging are the gold standards for the initial staging and
follow-up of H&N cancer.Quantitative image biomarkers
from medical images such as radiomics have previ-
ously shown tremendous potential to optimize patient
care, particularly for H&N tumors.2 However, radiomics
analyses rely on an expensive and error-prone manual
process of annotating the Volume of Interest (VOI) in
3D. The automatic segmentation of H&N tumors from
PET/CT images could therefore enable the validation
of radiomics models on very large cohorts and with
optimal reproducibility. Besides, automatic segmenta-
tion algorithms could enable a faster clinical workflow.
By focusing on metabolic and anatomical features,
respectively, PET and CT include complementary and
synergistic information in the context of H&N primary
tumor segmentation.

Recently, Transformer, a neural network based on
self -attention mechanisms to compute feature repre-
sentations and global dependencies, has flourished
in natural language processing and computer vision.3

In computer vision, Transformer-based architectures
have achieved remarkable success and have demon-
strated superior performance on a variety of tasks,
including visual recognition,4,5 objection detection,6,7

semantic segmentation,8,9 and more.5,10–12 The suc-
cess of vision transformers in the computer vision
field has inspired their use in medical imaging, where
they have shown promising potential in various appli-
cations, such as classification13–15 segmentation,16–18

and registration.19,20 Chen et al. first proposed the
TransUNet16 for medical image segmentation, which
used a 12-layer ViT for the bottleneck features and
followed the 2D UNet design and adopted the Trans-
former blocks in the middle structure.Later that year, two
improved versions of TransUNet, TransUNet+,21 and
Ds-TransUNet,22 were proposed and achieved better
results for CT segmentation tasks. For 3D segmentation
where the computational cost for self -attention becomes
very expensive, researchers have attempted to limit the
use of transformer blocks, that is,only use self -attention

at the bottleneck between the encoder and decoder
network23,24 or adopted a deformable mechanism which
enables attention on a small set of key positions.25

SegTran26 proposed to leverage the learning tradeoff
between larger context and localization accuracy by
doing pairwise feature contextualization with squeeze
and excitation blocks. More recently, more and more
state-of -the-art performance has been refreshed by
networks with pre-trained transformer backbone. Pre-
training techniques have become a new area of
research in transformers as the self -attention blocks
commonly require pre-training data at a large scale to
learn a more powerful backbone.27,28 For example, self -
supervised Swin UNETR29 collects a large-scale of CT
images (5000 subjects) for pretraining the Swin Trans-
former encoder, which derives significant improvement
and state-of -the-art performance for BTCV30 and Medi-
cal Segmentation Decathlon (MSD).31 Self -supervised
masked autoencoder (MAE)32 investigates the MAE-
based self -supervised pretraining paradigm designed
for Transformers, which enforces the network to pre-
dict masked targets by collecting information from the
context. Besides developing advanced architectures to
better learn the data, researchers have also attempted
to improve performance by providing additional data that
is more specific to the task the network is given.

In representation learning, the advancement
of multimodal learning has benefited numerous
applications.33,34 The utilization of fused features
from multimodalities has largely improved perfor-
mance in cross-media analysis tasks such as video
classification,35 event detection,36,37 and sentiment
analysis.38,39 A characteristic that these works have
demonstrated in common is that better features for
one modality (e.g., audio) can be learned if multiple
modalities (e.g., audio and video) are present at fea-
ture learning time. In,40 Ngiam et al. proposed the
cross-modality (audio + video) feature learning scheme
for shared representation learning and demonstrated
superior visual speech classification performance
compared to the classifier trained with audio-only or
video-only data. Wang et al. proposed a DNN-based
model combining canonical correlated autoencoder
and autoencoder-based terms to fuse multi-view for an
unsupervised multi-view feature learning.41 Following
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this trend, deep learning-based multimodal methods
have also gained attraction in the Medical Image
Analysis community due to their remarkable perfor-
mance in many Med Image Anal tasks including the
classification,42,43 diagnosis,44,45 image-retrieval,46 and
segmentation.47–50 Carneiro et al.51 proposed to use of
shared image features from unregistered views of the
same region to improve classification performance. In,44

Xu et al. proposed to jointly learn the nonlinear correla-
tions between image and other non-image modalities for
cervical dysplasia diagnosis by leveraging multimodal
information, which significantly outperformed methods
using any single source of information alone. In,45 Suk
et al. proposed to learn a joint feature representation
from MRI and PET using a hierarchical DCNN for
Alzheimer’s disease diagnosis.

Although vision transformer models boast impres-
sive representational capacities, contemporary vision
transformer-based segmentation models continue to
grapple with producing inconsistent and erroneous
dense predictions when confronted with multi-modal
input data. We speculate that the effectiveness of
their self -attention mechanism is restricted in cap-
turing the intrinsic complementary information within
multi-modal data. To this end, we propose a dual-
branch cross-attention Swin Transformer (SwinCross)
to combine images from two different modalities at dif-
ferent scales to produce more complementary feature
representations from the two modalities. To achieve
this, we devise a cross-modal attention (CMA) mod-
ule that draws inspiration from the cross-attention
and shifted window self -attention mechanism found in
Swin Transformer.7 This adaptation not only stream-
lines computational demands but also enables effective
cross-modal integration.To validate the effectiveness of
the proposed method, we conducted experiments on a
public dataset and compared the proposed method with
state-of -the-art methods such as UNETR,Swin UNETR,
and nnU-Net. The experimental results demonstrate
that the proposed method surpasses the comparative
segmentation methods (also with dual-modality input)
by effectively capturing the inter-modality correlation
between PET and CT, enhancing the performance of
head-and-neck tumor segmentation.

2 RELATED WORK

2.1 The current state-of-the-art
methods for H&N tumor segmentation

The top-five performing teams in the HECTOR 2021
challenge all used U-Net or its variants for the primary
H&N tumor segmentation task.52 In,53 Xie et al. used a
patch-based 3D nnU-Net with Squeeze and Excitation
normalization and a novel training scheme, where the
learning rate is adjusted dynamically using polyLR.54

The approach achieved a five-fold average Dice score of
0.764 on the validation data dataset,which ranked them
first on the leaderboard for the tumor segmentation task.
They trained five models in a five-fold cross-validation
manner with random data augmentation including rota-
tion, scaling, mirroring, Gaussian noise, and Gamma
correction. The final test results were generated by
ensembling five test predictions via probability averag-
ing. In,55 An et al. proposed a coarse-to-fine framework
using a cascade of three U-Nets. The first U-Net is
used to coarsely segment the tumor and then select a
bounding box. Then, the second U-Net performs a finer
segmentation on the smaller region within the bound-
ing box, which has been shown to often lead to more
accurate segmentation.56 Finally, the last U-Net takes
as input the concatenation of PET, CT, and the previous
segmentation to refine the predictions.The three U-Nets
were trained with different objectives—the first one to
optimize the recall and the rest two to optimize the
Dice score. The final results were obtained via majority
voting on three different predictions:an ensemble of five
nnU-Nets, an ensemble of three U-Nets with squeeze-
and-excitation (SE) normalization, and the predictions
from the proposed model. In,57 Lu et al.proposed a huge
ensemble learning model,which consists of fourteen 3D
U-Nets, including the eight models adopted in,58 winner
of the HECTOR 2020 challenge,five models trained with
leave-on-center-out, and one model combining a prior
and posteriori attention. The final ensembled prediction
was generated by averaging all fourteen predictions and
thresholding the resulting mask to 0.5. In,59 Yousefirizi
et al. used a 3D nnU-Net with SE normalization trained
on a leave-one-center-out with a combination of a
“unified” focal and Mumford-Shah losses, leveraging the
advantage of distribution, region, and boundary-based
loss functions. Lastly, Ren et al.60 proposed a 3D nnU-
Net with various PET normalization techniques, namely,
PET-clip and PET-sin. The former clips the standard-
ized uptake values (SUV) range in [0,5] and the latter
transforms monotonic spatial SUV increase into onion
rings via a sine transform of SUV, which ranked them
fifth on the leaderboard. Despite the widespread suc-
cess of CNNs in the H&N tumor segmentation task
and medical imaging applications at large, there are
still inherent constraints within the architecture that fun-
damentally impedes CNNs from attaining even greater
levels of performance.Due to the prevalent use of small
convolution kernels (3×3 or 5×5) in the majority of cur-
rent CNNs, the convolution operations primarily focus
on local spatial structures.3 As a consequence, CNNs
exhibit a bias towards capturing and emphasizing local
information.61,62 Although extensive efforts have been
made to address such limitation by increasing the depth
of the network,63 introducing dilated convolutions,54,64

deploying recurrent-,65 or residual-66 connections, the
initial layers of CNNs still have very limited receptive
fields (RFs), which restricts their ability to explicitly
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capture long-range spatial dependencies. It is only
at the deeper layers that such long-range dependen-
cies can be implicitly modeled. However, it has been
observed that as CNNs become deeper, the influence
of distant voxels diminishes rapidly.67 As a result, the
effective receptive fields (RFs) of these CNNs are
significantly smaller than their theoretical RFs, despite
the theoretical RFs encompassing the entire input
image.3 This inherent limitation of receptive size sets an
obstacle to learning global semantic information, which
is critical for dense prediction tasks like segmentation.

2.2 Transformers and multi-modal
learning

Transformers have been widely applied in the fields
of Natural Language Processing68–70 and Computer
Vision71–76 primarily due to its excellent capability
to model long-range dependency. Besides achieving
impressive performance in a variety of language and
vision tasks, the Transformer model also provides
an effective mechanism for multi-modal reasoning by
taking different modality inputs as tokens for self -
attention.77–86 For example, Prakash et al.82 proposed
to use a Transformer to integrate image and LiDAR rep-
resentations using attention. Going beyond language
and vision, we propose to utilize a cross-modal atten-
tion Swin Transformer to fuse 3D PET and CT images
at multiple resolutions for the segmentation of H&N
tumors. We build the SwinCross architecture based
on the shifted window block from Swin Transformer,
which only computes self -attention within local regions,
unlike conventional ViTs, which are more computation-
ally expensive. Although Swin Transformer is unable to
explicitly compute correspondences beyond its field of
view, similar to how ConvNets operate to some extent,
the shifted window mechanism still yields much larger
kernels than most ConvNets.87

3 SWINCROSS

3.1 Overall architecture of SwinCross

In this work, we propose an architecture for 3D multi-
modal segmentation with two main components: (1) a
cross-modal Swin Transformer for integrating informa-
tion from multiple modalities (PET and CT), and (2) a
cross-modal shifted window attention block for learn-
ing complementary information from the modalities. Our
key idea is to exploit the cross-modal attention mech-
anism to incorporate the global context for PET and
CT modalities given their complementary nature for the
H&N tumor segmentation task. We illustrate the archi-
tecture of SwinCross in Figure 1. The input image
to the SwinCross model is multi-channel 3D volume

Fin ∈ RH×W×D×M, with a dimension of H × W × D × M.
The input image is first split channel-wise, forming a
set of single-channel 3D images Fmod_1,… , Fmod_k ∈

RH×W×D. Then, we split each single-channel image into
small non-overlapped patches with a patch size of
H

H′
×

W

W ′
×

D

D′
, which corresponds to a patch resolution

of H′ × W ′ × D′. Each 3D patch is projected into an
embedding space with dimension C to form a tokenized
sequence Smod_k ∈ RN × C , where N = H′ × W ′ × D′ is
the number of tokens in the sequence and each token is
represented by a feature vector of dimensionality C.The
Smod_K sequences are inputs to the encoder network.

3.2 Cross-modal attention module

The cross-modal attention (CMA) module serves the
purpose of learning complementary information from
different modalities to accomplish a shared task. In
the case of bimodal cross-attention, the CMA module
utilizes features from one modality as the “key” and
features from another modality as the “query.” It then
generates attention weights based on these features
and employs them to filter/attend to the features from
the “key” modality. The resulting attention weights rep-
resent a weighted sum that indicates the importance
of features from the “key” modality that complements
(queried by the other modality) the features from the
“query” modality in achieving their common task.

For instance, in the context of PET/CT tumor segmen-
tation, attention weights computed from a PET “query”
and CT “key” aim to extract additional features from CT,
such as fine boundaries, that may not be present in
the PET features but are crucial for the final segmen-
tation task. This is due to the inherent complementary
nature of multimodal imaging procedures, which often
relate to the distinctive image formation mechanisms
of each modality. Conversely, attention weights derived
from a CT “query”and PET “key”aim to extract additional
features from PET, such as functional aspects, which
compensate for the limited capability of CT in revealing
functional features like tissue metabolism. Both streams
of information are vital for the successful completion
of the downstream task. A pictorial illustration of the
cross-modal attention mechanism is in Figure 2.

Mathematically, for bimodal cross-attention, the CMA
uses the scaled dot products between the query (Q)
and key (K) of each modality to compute the atten-
tion weights and then aggregates the values for each
modality,

Amod1

(
Qmod2

, Kmod1
, Vmod1

)

= Softmax
⎛⎜⎜⎝

Qmod2
KT

mod1√
Dk

⎞⎟⎟⎠Vmod1
, (1)
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F IGURE 1 Architecture of SwinCross. 3D PET and CT volumes are used as inputs to our Cross-modal attention Swin Transformer
(SwinCross) which adopts multiple cross-modal attention (CMA) modules for the fusion of intermediate feature maps between the two
modalities. To effectively combine patch tokens from both modalities at different scales, we develop a fusion method based on the CMA blocks,
which exchange information between two branches at multiple resolutions ( 1

4
, 1

8
, 1

16
, and 1

32
of the input resolution) throughout the two feature

extracting branches resulting in five feature vectors ( 1

2
, 1

4
, 1

8
, 1

16
, and 1

32
of the input resolution) from both modalities, which are combined via

element-wise summation. The five feature vectors constitute fused representations of the CT and PET image at five different resolutions. These
feature vectors are then processed with a ConvNet decoder which predicts the final segmentation map. We channel-wise concatenate the
decoded feature vectors from a previous resolution to the feature vector at the current resolution and use the resulting feature vectors as input
to the deconvolution block to produce the feature vector at the next resolution.
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F IGURE 2 Illustration of the cross-modality attention mechanism in the proposed CMA module. In this illustration, the features
corresponding to each modality within each window (visualized as individual cubes) serve a dual role as both queries and keys. To illustrate,
considering the context of tumor segmentation using PET/CT data, the attention weights computed using a PET “query” and a CT “key” are
intended to capture supplementary features from the CT data, such as intricate boundaries. These boundary features might not be prominent in
the PET data but hold significance for achieving accurate segmentation results. Conversely, attention weights obtained from a CT “query” and a
PET “key” are aimed at extracting supplementary features from the PET data. These additional features, such as functional characteristics,
serve to compensate for the inherent limitations of CT in revealing functional attributes like tissue metabolism.

Amod2

(
Qmod1

, Kmod2
, Vmod2

)

= Softmax
⎛⎜⎜⎝

Qmod1
KT

mod2√
Dk

⎞⎟⎟⎠Vmod2
, (2)

in which Qmod1
, Kmod1

, Vmod1
, Qmod2

, Kmod2
, Vmod2

denote queries, keys, and values from modality 1 and 2,
respectively;Dk represents the size of the key and query.

3.3 Network encoder

The encoder uses linear projections for computing a set
of queries, keys, and values (Q, K, and V) for each input
sequence Smod_k .

Qmod_k = Smod_k Mq, Kmod_k

= Smod_k Mk, Vmod_k = Smod_kMv (3)

where Mq ∈ RDf×Dq , Mk ∈ RDf×Dk , and Mv ∈ RDf×Dv

are weight matrices.
As these are 3D tokens and the attention computation

cost increases quadratically with respect to the number
of tokens, we adopted the shifted window mechanism
for the cross-attention calculation. Specifically, we uti-
lized windows of size M × M × M to evenly partition

the patchified volume into H′

M
×

W ′

M
×

D′

M
regions at a

given layer l in the Transformer encoder. In the subse-

quent layers of l and l + 1 of the encoder, the outputs
are calculated as

Âl
mod_k = W-MSA

(
LN

(
Al−1

modk

))
+ Al−1

modk
(4)

Al
modk

= MLP
(

LN
(

Âl
mod_k

))
+ Âl

mod_k (5)

Âl+1
mod_k = SW-MSA

(
LN

(
Al

modk

))
+ Al

modk
(6)

Al+1
modk

= MLP
(

LN
(

Âl+1
mod_k

))
+ Âl+1

mod_k (7)

A 3D version of the cyclic-shifting7 was imple-
mented for efficient computation of the shifted window
mechanism. SwinCross follows a standard four-stage
structure7 but has a cross-modality attention mech-
anism at each stage for the fusion of intermediate
feature maps between both modalities. The fusion is
applied at multiple resolutions (H

2
×

W

2
×

D

2
× C, H

4
×

W

4
×

D

4
× 2C, H

8
×

W

8
×

D

8
× 4C, H

16
×

W

16
×

D

16
× 8C) throughout

the feature extractor of both modalities resulting in four
filtered feature maps (H

4
×

W

4
×

D

4
× 2C, H

8
×

W

8
×

D

8
×

4C, H

16
×

W

16
×

D

16
× 8C, H

32
×

W

32
×

D

32
× 16C) from each

modality. The filtered feature maps from both modali-
ties are summed element-wise and sent to the decoder,
as indicated by the red plus signs on Figure 1. At each
stage, these feature maps are fed back into each of
the individual modality branches using an element-wise
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TABLE 1 Ablation study of CMA module on HECKTOR 2021 dataset.

Model
Block
composition

Embed
dimension

Feature
size

Number of
blocks

Window
size

Number of
heads

Five-fold
average dice
score

Swin UNETR
W-MSA + SW-MSA 768 48 [2,2,2,2] [7,7,7] [3,6,12,24] 0.754 ± 0.032

CMW-MSA + CMSW-MSA 768 48 [2,2,2,2] [7,7,7] [3,6,12,24] 0.769 ± 0.026

summation with the down-sampled (via patch merging)
input feature maps, as indicated by the green plus signs
on Figure 1.

We used an encoder with a patch size of 2 × 2 × 2 and
a feature dimension of 2 × 2 × 2 × 2 = 16, taking into
account the multi-modal PET/CT images with two chan-
nels.The size of the embedding space C was set to 48 in
our encoder. Furthermore, the encoder had four stages
which comprise of [2, 4, 2, 2] cross-modal shifted win-
dow Transformer blocks at each stage. Hence, the total
number of layers in the encoder was L = 10. Before
stage 1, each single-channel image is split into small
non-overlapped patches by a 3D convolution layer with
stride size equal to 2 (patch size) and output channels
equal to C, resulting in H

2
×

W

2
×

D

2
× C 3D tokens. To

follow the hierarchical structure proposed in,7 a patch
merging layer was used on each modality branch to
decrease the resolution of the feature representations
by a factor of 2 at the beginning of each stage. In
order to preserve fine details from the input image to
the output segmentation,we sent the original input multi-
channel 3D volume Fin ∈ RH×W×D×M and its embedded
version together with the feature map outputs from the
4 stages to the decoder, resulting in a total of 6 feature
maps with dimensions of H × W × D × M, H

2
×

W

2
×

D

2
×

C, H

4
×

W

4
×

D

4
× 2C, H

8
×

W

8
×

D

8
× 4C, H

16
×

W

16
×

D

16
× 8C,

and H

32
×

W

32
×

D

32
× 16C.

3.4 Network decoder

We adopted a ConvNet decoder as opposed to a Trans-
former decoder for the ease of cross-modal feature
fusion and lower computational cost. SwinCross adopts
a U-shaped network design in which the extracted
feature representations of the encoder are used in the
decoder via skip connections at each resolution. At
each stage i (i ∈ [0, 1, 2, 3, 4, 5]) of the encoder, the
output feature representations are reshaped into size
H

2i
×

W

2i
×

D

2i
and fed into a residual block comprising

of two 3×3×3 convolutional layers that are normalized
by instance normalization layers. Subsequently, the
resolution of the feature maps is increased by a factor
of 2 using a deconvolutional layer and the outputs
are concatenated with the outputs of the previous
stage. The concatenated features are then fed into

another residual block as previously described. The
final segmentation outputs are computed by using a
1×1×1 convolutional layer and a sigmoid activation
function.

4 RESULTS AND DISCUSSION

4.1 Datasets

The study utilized two publicly available datasets for
Head and Neck tumor segmentation: the HECTOR chal-
lenge dataset and the TCIA HNC dataset. In these
datasets, the primary gross tumor volume (GTVt) for
the patients was annotated by expert radiologists (in the
case of HECTOR) and derived from histological data (in
the case of TCIA).

The HECTOR challenge training dataset consisted of
224 cases, out of which 44 were reserved for valida-
tion. Each case in this dataset included two modalities:
PET and CT, which were rigidly aligned and resam-
pled to achieve a 1 × 1 × 1 mm isotropic resolution.
The HECTOR data underwent preprocessing using the
provided codes from the challenge website. The input
image size for the HECTOR dataset was set to 144×
144×144.

The TCIA dataset comprised 122 cases,with 24 cases
used for validation purposes. It contained the same
imaging modalities as the HECTOR dataset (PET and
CT), and the images were also resampled to the same
isotropic resolution. The input image size for the TCIA
dataset was defined as 128×128×128.

4.2 Ablation studies on HECKTOR
2021 dataset

In Table 1, we ablate the CMA module block, which only
concerns the attention mechanism of the Swin Trans-
former,and we keep everything else the same as in Swin
UNETR (e.g., embed dimension, feature size, number
of blocks in each stage, window size, and number of
heads). We start from channel-wise concatenated input,
which consists of two volume images from both modal-
ities. This multi-modal input already gives Swin UNETR
a strong five-fold average Dice Score of 0.754 ± 0.032.
If we send in the images from two modalities in two sep-
arate branches (as shown in Figure 1) and use CMA
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TABLE 2 Five-fold cross-validation benchmarks in terms of
mean Dice score values from all methods on HECTOR 2021 dataset
(PET+CT).

Dice score nnU-Net UNETR
Swin
UNETR

SwinCross
(proposed)

Fold0 0.714 0.702 0.715 0.717

Fold1 0.781 0.716 0.781 0.788

Fold2 0.803 0.727 0.752 0.800

Fold3 0.777 0.762 0.772 0.779

Fold4 0.761 0.708 0.748 0.761

Average 0.767 0.723 0.754 0.769

module block to fuse the learned features from each
modality at each stage, the performance is improved
to 0.769 ± 0.026. The output from each CMA mod-
ule block has the same shape as the input and each
filtered feature is added back to the corresponding

modality’s branch. At each stage, the sum of the filtered
features from the CMA module block is sent to the
decoder.

4.3 Comparison to the state-of-the-art
methods in medical image segmentation

We have compared the performance of SwinCross
against the current SOTA methods in medical image
segmentation such as Swin UNETR, UNETR, and nnU-
Net, using a five-fold cross-validation split. Evaluation
results (dual-modality) across all five folds are presented
in Table 2. The proposed SwinCross model achieved
the highest five-fold average Dice score of 0.769 among
all the comparing methods.Note that SwinCross outper-
formed Swin UNETR across all five folds, which demon-
strated its capability of learning multi-modal feature rep-
resentations at multiple resolutions via the cross-modal

F IGURE 3 From left to right are input PET image, CT image, inferenced mask from nnU-Net, UNETR, Swin UNETR, SwinCross (proposed),
and ground truth.
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TABLE 3 Summary of mean Dice score values on two public datasets (PET+CT, single split).

Dice score nnU-Net UNETR Swin UNETR SwinCross (proposed)

TCIA 0.765 ± 0.082 0.708 ± 0.088 0.741 ± 0.083 0.768 ± 0.079

HECTOR2021 0.761 ± 0.154 0.708 ± 0.250 0.748 ± 0.191 0.764 ± 0.151

The bold value on each row marks/indicates the highest mean Dice score among all methods.

attention modules. These results are consistent with our
previous findings,88 in which we showed that nnU-Net
outperformed Swin UNETR for H&N tumor segmenta-
tion on two public datasets. With the CMA block and
dual-branch fusion mechanism, SwinCross demon-
strates a slightly better segmentation performance than
nnU-Net, as measured by the five-fold average Dice
score. However, competitive performance is seen from
nnU-Net,which again indicates that for small object seg-
mentation, the improvement from modeling long-range
dependency may be limited as a smaller effective field
may be enough to capture all the foreground and back-
ground information of the small object such as a H&N
tumor.88

In Figure 3, we present sample inference mask out-
puts from all the segmentation methods explored in this
paper. Notably, for large tumors (depicted in Figure 3a),
it is evident that our proposed method is the only net-
work capable of capturing the precise tip of the tumor,as
indicated by the yellow crosshair. This result highlights
the advantage of leveraging Transformer-based mod-
els, which effectively model long-range dependencies
in the data. Furthermore, for smaller tumors (illustrated
in Figure 3c), SwinCross demonstrates its ability to
capture the fine edges of the tumor by integrating com-
plementary edge features from the CT image. This
outperforms the other methods that rely on channel-
wise concatenated inputs. The superiority of SwinCross
can be attributed to its employment of the CMA module
blocks, which facilitate feature fusion at multiple scales
within the encoder.This enables SwinCross to effectively
incorporate and leverage the benefits of complementary
information, leading to enhanced segmentation results,
particularly in capturing fine tumor edges. The observed
improvement in performance can be attributed to the
feature-level fusion design employed by SwinCross.This
within-network feature fusion design has been shown to
be generally better than alternative fusion mechanisms,
such as those applied at the input (e.g., channel-wise
concatenation) and output levels (e.g., voting), in the
context of multimodal tumor segmentation.34

4.4 Evaluation on TCIA dataset

We ran these experiments on one additional public
head-and-neck primary tumor segmentation dataset.

The summary of segmentation test results is summa-
rized in Table 3. The results revealed that SwinCross
outperformed the other three models on two public
datasets. By incorporating the proposed CMA mod-
ule, SwinCross demonstrated a significant performance
advantage over Swin UNETR and ultimately surpassed
nnU-Net in the task of head-and-neck primary tumor
segmentation in PET and CT images. The results
emphasize the effectiveness of SwinCross and highlight
its superior performance in achieving accurate and pre-
cise tumor segmentation compared to the other models
tested.

5 CONCLUSION

A cross-modal Swin Transformer was introduced for the
automatic delineation of head and neck tumors in PET
and CT images.The proposed model has a cross-modal
attention module that uses feature exchange between
two modalities at multiple resolutions. A ConvNet-based
decoder is connected to the encoder via skip connec-
tions at different resolutions. We have validated the
effectiveness of our proposed model by comparing
with the state-of -the-art methods using the HECTOR
2021 dataset. Through experimental validation, the
proposed method demonstrates superior performance
compared to the prevailing state-of -the-art segmenta-
tion techniques in the task of head-and-neck tumor
segmentation,utilizing PET and CT images.The method
proposed is generally applicable to other semantic seg-
mentation tasks using dual imaging modalities such as
SPECT/CT, or PET/ MRI.
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