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These notes briefly describe how to make decisions with uncertain observations by using the 
Bayes Decision Theory in the context of an edge detection example. 
 

1. Bayes Decision Theory 
 
To find the Bayes rule (by using the Bayes Decision Theory), we need to have the 
likelihood distribution 𝑃 𝑥 𝑦 	and the prior distribution	𝑃 𝑦  to calculate the posterior 
distribution. The likelihood distribution specifies how likely the observed is under the 
assumed class and the prior allows you to specify your domain knowledge, i.e., which 
class is more likely. The observer data, 𝑥, can be a specific pixel value present in the image 
like 3.2 or 1.9 or it can be an image feature vector. 
 
Mathematically, we can write the posterior probability as follows:  
 

𝑃 𝑥 𝑦 𝑃 𝑦 ≈ 𝑃 𝑦 𝑥 =
𝑃(𝑥, 𝑦)
𝑃(𝑥)  

 
The next thing is to specify a loss function. A loss function is defined as 
 

 𝐿 𝛼 𝑥 , 𝑦 = 𝐾_1	𝑖𝑓	𝛼 𝑥 = 𝑦	
𝐾_2	𝑖𝑓	𝛼 𝑥 ≠ 𝑦  

 
where 𝛼 𝑥  is the label/class estimated by the model and 𝑦	is the true label of the data.  
For example, the loss function is defined as follows:  
 

𝐿 𝛼 𝑥 , 𝑦 = 0	𝑖𝑓	𝛼 𝑥 = 𝑦	
1	𝑖𝑓	𝛼 𝑥 ≠ 𝑦  

 
We can then compute the risk for this 𝛼 𝑥 : 
 

𝑅 𝛼 = 𝐿 𝛼 𝑥 , 𝑦 𝑃 𝑥, 𝑦
6,7

 

    									= (𝐿 𝛼 𝑥 , 0 𝑃 𝑥, 0 + 𝐿 𝛼 𝑥 , 1 𝑃 𝑥, 1 )6  
 
Now assume that z is one of the 𝑥’s and we want to minimize the risk for one of the terms 
in the above sum. And by taking the log of that we have: 
 
    𝐿 𝛼 𝑧 , 0 𝑃 𝑧, 0 + 𝐿 𝛼 𝑧 , 1 𝑃 𝑧, 1  
 
When 𝛼 𝑥 = 0, the risk for that is as follows: 



 
    𝑙𝑜𝑔𝑃 𝑧, 1 = log 𝑃 𝑧 𝑦 = 1 + 𝑙𝑜𝑔𝑃(𝑦 = 1) 
 
When 𝛼 𝑥 = 1, the risk for that is as follows: 
 
    𝑙𝑜𝑔𝑃 𝑧, 0 = log 𝑃 𝑧 𝑦 = 0 + 𝑙𝑜𝑔𝑃(𝑦 = 0) 
 
Now if we want the classifier,	𝛼 𝑧 , to choose 1, we would like to have the following risk 
relationship: 
 
     𝑙𝑜𝑔𝑃 𝑧, 𝑦 = 1 > 𝑙𝑜𝑔𝑃 𝑧, 𝑦 = 0  
which is 
 
    𝑙𝑜𝑔 A(B|7DE)

A B|7DF
> 𝑙𝑜𝑔 A(7DF)

A(7DE)
 = T 

 
This is an analytical way to derive Bayes rule’s threshold. Notice that our loss function is 
simply 0 and 1 we didn’t include any T_f, T_n, F_n, F_p. But if we do the analytical 
threshold should be as follows: 
  
    𝑙𝑜𝑔 A(6|7DE)

A 6|7DF
> 𝑙𝑜𝑔 A(7DF)

A(7DE)
+ log	 GHIJ_K

GLIJ_M
 

 
Of course it’s the best to specify the threshold by defining the prior and loss function at the 
beginning but if we don’t have a specific loss/prior in mind we can use the following 
estimators to find a threshold using the development dataset.  

 
Maximum Likelihood estimation and Maximum a posteriori estimation are methods that 
can be used for model parameter estimation. For a binary decision task the parameter to be 
estimated can be the threshold for classifying the observed data into a certain class. By 
using these methods we can find the optimal threshold for 𝛼 𝑥  using the development set 
(a set of data that’s separate from training and testing).  

 
There are three approaches to select a model: 1) Baye’s Decision Theory, that is we can 
penalize the errors by different amounts by taking the rareness of the error into account by 
minimizing the expectation of the loss function above. 2) MAP, which is we can penalize 
all errors by the same amount by simply maximizing the posterior probability above and 
get a MAP estimator 𝛼 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑃(𝑦|𝑥). 3) ML, which is that we are assuming the 
prior distribution is uniform (no prior). For the first approach, the total loss function or the 
risk is: 
 

𝑅 𝛼 = 𝐿(𝛼 𝑥 , 𝑦)𝑃(𝑥, 𝑦)
6,7

 

 
To select the best decision rule 𝛼 𝑥  among all 𝛼s with different thresholds, we can 
minimize the above total loss function and then we will get the Bayes Risk and Bayes 
Decision Rule as follows:  



R(𝛼) = arg𝑚𝑖𝑛U	𝑅(𝛼) 
𝛼 = arg𝑚𝑖𝑛U	𝑅(𝛼) 

 
For a binary decision task, the Bayes rule can be expressed as the log-likelihood ratio vs. a 
threshold value. A generic form of the Bayes rule can be written as follows:  
 
        𝑙𝑜𝑔 A(6|7DE)

A(6|7DIE)
> 𝑇 

 
The threshold is dependent on the loss function and prior. The loss function is defined at 
the beginning by the user by assigning user preferred cost to different types of mistakes 
(i.e.,	𝐿 𝛼 𝑥 , 𝑦 , FP=3, FN=30) and the prior is specified by the domain knowledge. Once 
the prior and loss function is defined, conditional distributions 
(𝑃 𝑥 𝑦 = 1 	𝑎𝑛𝑑	𝑃 𝑥 𝑦 = −1 ) are learned from the training data, we can then use the 
threshold (𝑙𝑜𝑔 A(7DF)

A(7DE)
+ log	 GHIJ_K

GLIJ_M
) and these conditional distributions to calculate the 

likelihood ratio of the testing data and classify the testing data. The distribution of 𝑃(𝑥|𝑦 =
1) for the testing data is obtained from fitting the learned conditional distributions to a 
parametric model or simply using the original histogram generated from the training data.  
 

2. False positives, false negatives, and their relation to the 
threshold 
 

What are false positives and false negatives? What are the formula for these when the likelihood 
functions/distributions are Gaussians of one variable with the same variance σ2, but different 
means µT, µD. Express the false positives and false negatives in terms of the error function 
(integrals of Gaussians). How do they vary with the threshold? Give a formula for how the 
threshold depends on the prior and the loss function? 

 
False positive is when the estimated class is positive but the true class is actually negative  
False negative is when the estimated class is negative but the true class if actually positive 
 
 

𝐹𝑃 = 	 𝑃(𝑥|𝑦 = −1)𝑑𝑥
Z[	\]	ZG

G
 

𝐹𝑁 =	 𝑃(𝑥|𝑦 = 1)𝑑𝑥
G

_[	\]	Z`
 

 
 
where 𝑃 𝑥 𝑦 = −1 ~𝑁 𝑢G, σ  and 𝑃 𝑥 𝑦 = 1 ~𝑁 𝑢d, σ  

 
To find the upper and lower bounds, we can use the CDF of the Gaussian distribution. The 
upper bound of the Gaussian that has mean 𝑢𝑇 is equal to: 
 
    1 = E

e
1 + erf 6IZG

h e
 



    𝑥 = 𝑢G + 𝜎 2𝑒𝑟𝑓IE 1 = ∞ 
 
and the lower bound of the Gaussian that has mean 𝑢𝐷 is equal to:  

 0 = E
e
1 + erf 6IZd

h e
 

    𝑥 = 𝑢G + 𝜎 2𝑒𝑟𝑓IE −1 = −∞ 
 

 So the integrals above become: 
 

    𝐹𝑃 = 	 𝑃(𝑥|𝑦 = −1)𝑑𝑥m
G  

     = 	1 −	 𝑃(𝑥|𝑦 = −1)𝑑𝑥G
Im  

= 	1 −	
1
2 1 + erf

𝑇 − 𝑢𝑇
𝜎 2

 

 

𝐹𝑁 =	 𝑃(𝑥|𝑦 = 1)𝑑𝑥
G

Im
 

     =	 E
e
1 + erf GIZd

h e
 

 
From the relations above, we can see that as T increases, FP rate decreases and FN 
increases.  
For Bayes Decision Theory, the threshold is dependent on the loss function and prior as 
follows: 
 

𝑙𝑜𝑔
𝑃(𝑥|𝑦 = 1)
𝑃 𝑥|𝑦 = 0 > 𝑙𝑜𝑔

𝑃(𝑦 = 0)
𝑃(𝑦 = 1) + log	

𝑇M − 𝐹_𝑝
𝑇K − 𝐹_𝑛

 

 
 

3. Bayes Decision Theory for Edge Detection 
 
How can Bayes Decision Theory be applied to edge detection? Why is a first order derivative filter 
good for edge detection? And why is the second order 1 derivative filter less good? Given the 
hierarchical nature of visual processing, and the difficulty of edge detection, what is a good loss 
function for edge detection? What should be the trade-off between false positives and false 
negatives? 

 
For edge detection, there are two classes to be set for Bayes Decision Theory: y=0 for no 
edge and y=1 for edge. Once the classes are chosen, we can then define the prior and loss 
function to make the threshold as described at the end of question 2. Then we will need to 
learn the conditional probability distributions from the training data and then from that we 
can calculate the likelihood of the testing data, from which we can obtain the 
class/inference result by comparing it with the threshold.  
 
There are few advantages for 1st order derivatives: 1) fast to compute, 2) good at detecting 
strong edges. First order derivatives are less sensitive to noise than second order derivative 



in detecting edges. Also, 2nd derivatives require strong changes to be useful. In other words, 
not so significant edges can’t be detected by the 2nd derivative of the image. A good 
illustration of the 2nd derivatives can be seen in the following picture. It’s not hard to see 
that the rate of the increase or decrease on slope is not significant between two neighboring 
points (i.e., pixel values) on the curve so the 2nd derivative in this case won’t serve as a 
good maker for edges as the 1st derivatives.  
 

 
 
A good loss function for edge detection should have a relatively small penalty for false 
positive so that all possible edges can be captured by the classifier and if necessary these 
edges can be further processed for more accurate result. So we should have a smaller value 
for the cost of false positives than that of the false negatives. 
 
 


