
PhD Oral Exam Notes Fall 2016

Probability and Statistics
Ye Li Scribes: 520.651: Random Signal Analysis

This notes cover basic knowledge in probability theory and statistics in Electrical Engineering and Image
Science.

1 Introduction to Probability

1.1 Probability space

A probability space is a mathematical construct that models a real-world process (like tossing a coin OR
tossing two coins) consisting of states (H , T OR HH,TT,HT,TH ) that occur randomly. A probability space
is usually constructed with a specific kind of situation or experiment in mind.

A probability space consists of three entities:

1. A sample space is a set of all possible outcomes (not combination of outcomes) of the random
experiment, which usually is denoted by Ω.
Example:

ω ∈ Ω

where ω is an experimental outcome. For example, if the experiment is tossing a coin, all possible
outcomes are just {head, tail}. This set is called sample space. For tossing four coins, the sample
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space is

HHHH

HHHT

HHTT

HHTH

HTTT

HTHH

HTHT

HTTH

TTTT

TTHH

TTHT

TTTH

THTT

THHH

THHT

THTH

(1)

2. An event space is customized to the way you define the random variable. An event space consists
a set of events (one event can be you get exactly zero head before 1st tail, another can be you get 1
head before the first tail; an event corresponds to one value that the random variable can take) and
is usually denoted by F , where each event is a set containing zero or more outcomes. As an example,
we can define a random variable that records the number of heads before the first tail on the sample
space specified above. The random variable takes 4 possible values, namely 0, 1, 2, and 3. One event
that corresponds to 0, which describes that you get 0 head before the 1st tail, would thus consist of
the following outcomes:

HHHH → 0

TTTT → 0

TTHH → 0

TTHT → 0

TTTH → 0

THTT → 0

THHH → 0

THHT → 0

THTH → 0

(2)

The event space is a space that consists of all events (in the example 4 events) and therefore represents
all possible combinations of outcomes from the experiment.
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Example:
ω ∈ A ∈ Ω,F = {A,B, ..}

where A = {1, 3, 5} and Ω = {1, 2, 3, 4, 5, 6}. ω is a point or an atom of Ω, i,e., ω = 1. Here A represents
an event of only getting odd numbers.

3. Given an experiment with sample space Ω, a probability measure is a function, denoted by P ,
defined on the space of all events of the experiments and taking values in the interval [0, 1]. For every
event A, P (A) provides a numerical assessment of the likelihood that the event A occurs; the quantity
P (A) is the probability of A. For any event E,

0 ≥ P(E) ≤ 1

For any sequence of events E1, E2, ... which are mutually disjoint,

P (∪n=1En) =
∑
n=1

P (En)

P is a function mapping event in event space to a probabilistic number. Probabilities are defined on
event space, which is a collection of subsets of Ω, not Ω

The standard representation of a probability space is a triple with the above three entities in their respec-
tive order, i.e.,

(Ω,F ,P)

where the pair (Ω,F ) is referred as a measurable space, which describes the outcomes and modes of
observation of the experiment without reference to the likelihood of the observables. In theory, the same
measureable space can give rise to many different probability space.

Brain Teasers:

1. How many subsets(possible events) are in Ω = {H,T}?

{H}, {T}, {H,T}, φ

We say that the event E occurs if the outcome of the experiment is contained in E (recall an event is a
set). So, we may think this as an event of getting any outcome - as long as you toss the coin you’ll get
an outcome, thus this event has probability 1 or, P (Ω) = 1. φ can be thought as an event of getting
nothing.

2. Definition of a power set: The power set of any set S is the set of all subsets of S, including the empty
set and S itself. If S is the set {x, y, z}, then the subset of S are:

{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}

and hence the power set of S is {{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

If we think S as our sample space in this case which contains 3 possible outcomes of an experiment, then as
shown above, we can have as many as 8 events in the event space. Remember, we construct our event space
based on the definition of the random variable in context. Here, if we specify a random variable to denote
whether or not the outcome contains z. Then, the event {x, y} above can be thought as an event that you
do not get z in the outcome and for example assigned a value 0. And, the other event in the event space is
the event that you get z in the outcome and assigned a value 1.
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But the richer the event space, the more work is required for the probability measure function
P . So it’s better to have a minimum/lean event space. That is try to have less events in your event space,
or equivalently make your random variable equal to as few real values as possible. Because the more real
values your random variable can take, the more work is required later to define probability (likelihood of an
event). Say, if you have a random variable that takes on 4 different real values, then in order to construct
its probability distribution function, you would need to count the number of occurrence (frequency) for each
of the values that the random variable can take.

Note: It’s not necessary that a point ω should be of the same form as the outcome of the physical experiment;
it merely suggests that one should be able to set up a correspondence between the actual outcomes and the
points in Ω. For example, the sample space Ω = (0, 1] can adequately represent the outcomes of a sequence
of coin tosses, despite of the fact that the points in Ω are not themselves binary sequences. This is because
it is possible to identify every ω with a distinct binary sequence by taking its binary expansion (conversely,
every binary sequence that does not converge to 0 can be identified with a distinct point in (0, 1]).

1.2 Field

Motivation: Why need field?
If we’re talking about event A and B,we want to talk about their probabilities and the probability of A

⋃
B.

Since probabilities are defined on events, in order for that to happen, A
⋃
B needs to be an event or event

collection. Below are criteria that a field must meet:
An event space F becomes a field if:

1. φ,Ω ∈ F (The empty set φ is called the impossible event. Its probability is always zero. The entire
sample space Ω is called the sure event. Its probability is always one, i.e., P (Ω) = 1)

2. if A ∈ F => Ac ∈ F (closure under complementation)

3. if A,B ∈ F => A ∪B ∈ F (closure under union)

4. A ∈ F , B ∈ F => A ∩B ∈ F (closure under intersection)

5. A1, ..., An ∈ F => A1 ∪ ... ∪An ∈ F (closure under finite unions)

Example(two extremes):

1. Two elements {φ,Ω} make the smallest field; a totally valid field.

2. 2Ω, where 2Ω is defined as the power set (the collection of all subsets of Ω)

1.3 Event spaces and sigma-fields

An event space, F , consists of events, namely possible combinations of outcomes from the experiment and
it can be defined as follows:

F = {A =

∞⋃
i=I

Ci, I ∈ {1, 2, 3, 4, .., k}}

where Ω =
∞⋃
i=I

Ci, Ci is an event, like a slice in a pizza. k is like the number of slices in the pizza. If k = 2,

we will have a field like this: (Ω, {φ,A,Ac,Ω})
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Now we want to talk about the probability of each individual event as well as their union. For example Ai

can be an event in the field but countable unions, namely,
∞⋃
i=I

Ai does not necessarily belong to the field.

For example, if we define an event, Ai using a semi-open interval, (0, 1
2 −

1
3i ]. Then, its countable union,

∞⋃
i=I

Ai = (0, 1
2 ) will be outside of F because it cannot be expressed as a finite union of semi-open intervals

hence violate (3). So for scenarios like this, we can’t talk about its probability. Now we are going to modify
the axioms of a field to below:

1. φ,Ω ∈ F (The empty set φ is called the impossible event. Its probability is always zero. The entire
sample space Ω is called the sure event. Its probability is always one, i.e., P (Ω) = 1)

2. if A ∈ F => Ac ∈ F (closure under complementation)

3. A1, ..., An ∈ F =>
∞⋃
i=I

Ai ∈ F (closure under countable instead of finite unions)

And, these axioms make the event space F suitable for a σ field (a field that’s closed under countable unions).
For example, F = {φ,Ω} makes (Ω,F ) the smallest σ field and F = 2Ω makes F the largest σ field. Also,
the number of elements in F is 2n. When n = 2, there will be 4 elements in F , i.e., F = {φ,Ω, A,Ac}

1.4 Generated (man-made) sigma-fields

If we were to generate a sigma field, we would want a minimal sigma field as we would like to keep the
event space as lean as possible. Support Ω = (0, 1], and define the collection G by

G = {(0, 1/3], (2/3, 1]}

To construct the minimum σ field, we need the following:

1. 1) φ and 2) (0, 1] must lie in every σ field containing G, as do 3) (0, 1/3] and 4) (2/3, 1] and 5) their
union (0, 1/3] ∪ (2/3, 1], and so dose 6) its complement (1/3, 2/3]

2. By closure under union (closure to the events in G), 7) (0, 2/3] and 8) (1/3, 1] must also lie in every σ
field that containing G

So the smallest σ field containing G is the following:

F = {φ,Ω, (0, 1/3], (1/3, 2/3], (2/3, 1](0, 2/3], (1/3, 1], (0, 1/3] ∪ (2/3, 1]}

1.5 The Borel field

As we had proved above that the field below is not a σ field.

F = {φ} ∪ {A : A =

∞⋃
i=I

(ai, bi],M <∞, (ai, bi] ∈ (0, 1]}

as countable unions such as (0, a) is not in the field, which violates the closure under countable union criteria
of a σ field. By including the countable union(s) to the field, F can be augmented to a minimal σ field,
σ(F). This σ field is called the Borel field of the unit interval, and is denoted by B((0, 1]). The Borel field
contains F and the countable unions such as (0, a).
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1.6 Random Variable

A real-valued function ω : X(ω) defined for points ω in a sample space Ω is called a random variable. A
random variable(r.v.) on a measurable space (Ω,F) is a real-valued function X = X(.) on Ω such that for
all a ∈ R, the set

X−1(−∞, a] = {ω : X(ω) ≤ a}

lies in F , i.e., the set is an event. For example, a special case of a r.v. is an indicator function IA(ω).
The indicator function is defined on the sample space Ω) for each experimental outcome, ω and maps each
outcome to value of 1 and 0 (ONLY). But in general the values can be any real number.

IA(ω) =

{
1, if ω ∈ A
0, if ω ∈ Ac

(3)

Graphically, we have

The set X−1 is given by

X−1(−∞, a] =


φ, if a < 0

Ac, if 0 ≤ a < 1

A, if a = 1

Ω, if a ≥ 1

(4)

Basically, a random variable’s input is an experimental outcome and outputs a scalar. But note that prob-
abilities are defined on event space which contains subsets of Ω
A less abstract example that combines sample space, random variable, and its probability density function
is as follows:

Example An experiment consists of throwing a fair coin 4 times, you are asked to find the frequency
function and the cumulative distribution function of the following random variable:
a) the number of heads before the first tail
b) the number of heads following the first tail
c) the number of heads minus the number of tails
d) the number of tails times the number of heads

Soln: In order to find the pdf and cdf of these random variables, we first need to list the sample space of the
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underlying experiment.

Ω = {HHHH,HHHT,HHTT,HHTH,HTTT,HTHH,HTHT,
HTTH, TTTT, TTHH, TTHT, TTTH, THHH,THHT, THTH} (5)

For the random variable in a), we have

HHHH → 0

HHHT → 3

HHTT → 2

HHTH → 2

HTTT → 1

HTHH → 1

HTHT → 1

HTTH → 1

TTTT → 0

TTHH → 0

TTHT → 0

TTTH → 0

THTT → 0

THHH → 0

THHT → 0

THTH → 0

(6)

Each arrow above is actually representing the functionality (what a r.v. does) of a random variable, which
is a function that transfers experimental outcome in event space (automatically in sample space) to a real-
valued number. After counting we have 9 zeros, 2 twos, 1 three, and 4 ones. So, for pdf we have

P (X = 0) =
9

16

P (X = 2) =
2

16

P (X = 3) =
1

16

P (X = 1) =
4

16
(7)

These probabilities are also probability measures, which is a function that’s defined on the event space, and
takes values in [0, 1] to provide numerical assessment of the likelihood that event A occurs, i.e., P (A) =
P (X = 2). And event A’s event space is A = {HHTT,HHTH}. One event usually corresponds to one
real-valued number which the random variable would actually take. In other words, probability frequency
function of a random variable is actually composed of probability measures of events as different events get
mapped to different real-valued numbers by the random variable.
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1.7 Joint Distributions

Joint probability is 2 or more random variables defined on the same sample space. For example, for an
experiment of a coin tossed twice, the sample space is

Ω = {HT, TH, TT,HH}

Now define random variables on this sample space:

• Let random variable X be the vent that you get head on the first toss

• Let random variable Y be the total number of head in the trail (2 tosses in total)

Y/X Yes No

0 0 0.25
1 0.25 0.25
2 0.25 0

e.g., P (X = Y, Y = 1) = 0.25

1.8 Independence

If event A and B satisfy P (A|B) = P (A|Bc) we say that A does not depend on B. The event A and B
are called independent if and only if they satisfy

P (A ∩B) = P (A)P (B) (8)

Two sets A and B are called disjoint if A ∩ B = φ. Two sets being disjoint has nothing to do with their
probabilities and is purely a relation in the event space. But the notion of independence does depend on P .
The definition of independence implies

P (A|B) = P (A) (9)

Also, if A and B are independent then so are A and Bc, Ac and B, Ac and Bc. If follows that if any one of
the four pairs is independent then so are the other three. Again, the notion of independence is defined on
probability and has nothing to do with the events being disjoint or not. Also, if P (B) = 0 or P (B) = 1 then
A and B are independent as B will or will not happen for sure and thus has no effect on A.

A sequence of events Aj , j=1,2,... (now imagine that there are more than two events in the event space) are
mutually independent if for every finite subset J containing two or more positive integers,

P (∩j∈JAj) =
∏
j∈J

P (Aj) (10)

Note: Pairwise independence means only two events are independent of each other and does not imply
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mutual independence, as shown by the following example from Wikipedia:

1.9 Conditional Probability

Given two events A and B the conditional probability is defined as

P (A|B) =
P (A ∩B)

P (B)
(11)

The definition gives us the following relation

P (B|A) =
P (A ∩B)P (B)

P (A)
(12)

and the law of total probability

P (A) = P (A ∩B)P (B) + P (A ∩Bc)P (Bc) (13)

Combining this with the previous results, we get the Bayes rule

P (B|A) =
P (A ∩B)P (B)

P (A ∩B)P (B) + P (A ∩Bc)P (Bc)
(14)

Also, note that the conditional probability is a probability as a function of its first argument, we can write
P (Ac|B) = 1− P (A|B)
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Assume that we observe an event A in an experiment and Bn is a sequence of pairwise disjoint events that we
can’t observer but would like to make inference on, namely we want to know P (Bk|A) - an entire distribution
which has the same number of distinct values that A can take on. Before making any observations we know
the prior probabilities P (Bn) and we know the conditional probabilities P (A|Bn). After we observer A,
we compute the posterior probabilities P (Bk|A) for each k (notice that there is a change of suffix here
because now we are after the whole distribution not only the probabilities of the n discrete points in our
prior distribution). To do so we generalize the law of total probability. Assume that

∑
n P (Bn) − 1. Then

law of total probability is

P (A) =
∑
n

P (A|Bn)P (BN ) (15)

and the general Bayes rule gives,

P (Bk|A) =
P (A|Bn)P (Bn)∑
n P (A|Bn)P (Bn)

(16)

1.10 Combinatorics and Probability

Permutation: Permutation differs from combination in that it cares about the order of the set. Combina-
tions are selections of some members of a set where order is disregarded. For example, written as tuples,
there are six permutations of the set {1, 2, 3, }, namely: (1,2,3), (1,3,2,), (2,1,3),(2,3,1), (3,1,2) and (3,2,1).
These are all the possible orderings of this three-element set.

Combination: Combination is a way of selecting items from a collection, such that the order of selec-
tion does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three
combinations of two that can be drawn from the set: an apple, a pear; an apple and an orange; or a pear
and an orange.

In combinatorics, there are fours kinds of counting problems:

• ordered sampling with replacement: For k finite sets A1, A2, ..., Ak (each set has |Ai| members), there
are |A1| ∗ |A2| ∗ ...|Ak| k-tuples of the form (a1, a2, ..., ak) where each ai ∈ Ai

• ordered sampling without replacement (permutation): Given a set (only one set) A with cardinatlity
|A| = n, there are n!

(n−k)! k-tuples of the form (a1, a2, ..., ak) with distinct entries ai, ai ∈ A.

• unordered sampling without replacement (combination): If the ordering of the elements ai is not
important then there are

(
n
k

)
= n!

k!(n−k)! (n choose k) k-tuples of the form (a1, a2, ..., ak) with distinct

entries ai. This differs from 2 by k! in the denominator which accounts for the number of permutations
that give the same combination when the order is ignored. For example,k! = 2! = 2 accounts the
fact that (1, 2) and (2, 1) are equal. k! = 3! = 6 would account for the fact that (1,2,3), (1,3,2,),
(2,1,3),(2,3,1), (3,1,2) and (3,2,1) are equal. For example, the string, ”BUTTHEADEDD”, we would
have 11! of ways to sequence it. But the number of combinations should be equal to 11!

2!2!3! . The
denominator accounts for permutations of the letter ”T”, ”E” and ”D”. So in general, the number of
such sets possible is given by the multinomial coefficient(

n

k0, k1, k2, ..., km−1

)
=

n!

k0!k1!..km−1!
(17)

where k0 + k1 + k2+, ...,+km−1 = n

Binomial is just a special case of multinomial:
(

n
n1,n2

)
=
(
n
n1

)
=
(
n
n2

)
since n1 + n2 = n
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• unordered sampling with replacement: Given a set A with |A| = n, there are
(
k+n−1

k

)
ways in which

different sets of length k can be chosen with replacement from n items.

For example, for a set of size n and a sample of size r, there are n× n× n... = nr different ordered samples
with replacement and n(n− 1)(n− 2)...(n− r+ 1) different ordered samples without replacement. Also, the
number of ordered samples is equal to the number of unordered samples times the number of ways to order
each sample(r!). So the number of unordered samples is equal to n(n − 1)(n − 2)...(n − r + 1)/r!, which is
equal to n!

(n−r)!r! =
(
n
r

)
.

2 Discrete Random Variables

2.1 Probability mass functions

The probability mass function (pmf) of a discrete random variable X taking distinct values xi is defined
by

pX(xi) = P (X = xi) (18)

The Poisson random variable is used to model many different physical phenomena ranging from the pho-
toelectric effect and radioactive decay to computer message traffic arriving at a queue for transmission. A
random variable X is said to have a Poisson probability mass function with parameter λ > 0, denoted by
X ∼ Poisson(λ) if ,

pX(xi) =
λke−λ

k!
, k = 0, 1, 2... (19)

The joint probability mass function of X and Y is defined by

pXY (xi, yi) = P (X = xi, Y = yi) (20)

The marginal probability mass functions are given as

pX(xk) =
∑
j

pXY (xk, yj)

pY (yj) =
∑
k

pXY (xk, yj)
(21)

A pair of discrete random variables are independent if and only if their joint pmf factors into the product
of their marginal pmfs:

pXY (xi, yi) = pX(xi)pY (yi) (22)

2.2 Expectation

The expectation, mean or average of any discrete random variable X is defined by

E[X] =
∑
i

xiP (X = xi) (23)
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or using the pmf notation,

E[X] =
∑
i

xipX(xi) (24)

Given a random variable X and let Z = g(X) be a new random variable where g(x) is a real-valued function.
The expected value of Z is given by the lawoftheunconsciousstatistacian(LOTUS).

E[Z] = E[g(X)] =
∑
i

g(xi)pX(xi) (25)

In general if g(x, y) is a real-valued function of two variables x and y, then

E[g(X,Y )] =
∑
i

∑
j

g(xi, yi)pXY (xi, yi) (26)

The expectation operator is linear

E[aX + bY ] = E[aX] + E[bY ] = aE[X] + bE[Y ] (27)

If X and Y are independent then for any function h(x) and k(y)

E[h(X)k(Y )] = E[h(X)]E[k(Y )] (28)

The correlation between uncorrelated random variables is zero if and only if at least one of them has zero
mean. If not then they are uncorrelated if and only if

E[(X −mX)(Y −mY )] = 0 (29)

If X and Y are independent then they are uncorrelated. The notion of being uncorrelated is weaker than
that of independence.

2.3 Moments

The nth moment, n ≥ 1 of a real-valued random variable X is defined to be E[Xn]. The first moment of X
is its mean, m = E[X]. The central moment of X is defined as E[(X −m)n]. The variance is defined as the
average squared deviation of X about its mean. It is the second central moment

var(X) = E[(X −m)2] (30)

The variance characterizes how likely it is to observe values of X far from its mean. When a random
variable dose not have zero mean, it is often convenient to use the variance formula,

var(X) = E[X2]− (E[X])2 (31)

The standard deviation of X is defined to be the positive square root of the variance. If X1, X2, ... be a
sequence of uncorrelated random variables; i.e., for i 6= j, Xi and Xj are uncorrelated then the variance of
the sum is the sum of variances,
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var(

n∑
i=1

Xi) =

n∑
i=1

var(Xi) (32)

2.4 The Markov and Chebyshev Inequalities

The Markov and Chebyshev Inequalities provide bounds on probabilities in terms of expectations that are
more readily computable.

• The Markov inequality says that if X is a non-negative random variable, then for any a > 0,

P (X ≥ a) ≤ E[X]

a
(33)

• The Chebyshev inequality says that for any random variable X and any a > 0,

P (|X| ≥ a) ≤ E[X2]

a
(34)

• The following are special cases of the Chebyshev inequality

P (|X − µ| ≥ a) ≤ var(X)

a
(35)

where µ = E[X], if σ2 = var(X), then taking a = kσ yields

P (|X − µ| ≥ a) ≤ 1

k2
(36)

2.5 Probability Generating Functions

Let X be a discrete random variable taking only non-negative integer values. The probability generating
function of X is

GX(z) = E[xX ] =

∞∑
n=0

znP (X = n) (37)

The probability generating function (pgf) is used to compute mean and variance and the probability mass
function. The pgf of a sum of independent random variables is the product of the individual pgfs, i.e., if
Y = X1 +X2 + ...+Xn then

GY (z) = GX1
(z) ∗GX2

(z)...GXn(z) (38)

This is called the factorization property. The probability generating function can be expanded as the
series,

GX(z) = P (X = 0) + zP (X = 1) + z2P (X = 2) + ... (39)

Two different pmfs can’t have the same pgf since pmf can be recovered from pgf as follows:

G
(k)
X (z)|z = 0

k!
= P (X = k) (40)

The probability generating function can also be used to find moments. The Kth factorial moment of X
is given as

G
(k)
X (z)|z = 1 = E[X(X − 1)(X − 2)...(X − [k − 1])] (41)

where G
(k)
X (z) is the kth derivative of the probability generating function. A special case for k = 1 yields

G
′

X(1) = E[X]
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2.6 The Binomial Random Variable

In many problems, the key quantity of interest can be expressed in the form Y = X1 + ...+Xn where Xi are
i.i.d. Bernoulli(p) random variables. For Bernoulli(p) random variable, GXi = E[zXi ] = z0(1 − p) + z1p =
(1− p) + pz and so GY (z) = [(1− p) + pz]n. Recovering pmf using the relation (1.35) gives

P (Y = k) =
n!

k!(n− k)!
pk(1− pn−k) (42)

Since GY (z) is a polynomial of degree n, G
(k)
Y (z) = 0 and so P (Y = k) = 0, for all k > n. This random

variable is called a binomial(n,p) random variable. It counts how many times an event has
occurred. The binomial(n,p) random variable can be approximated by a Poisson(λ) random variable for
large n and small p since

[(1− p) + pz]n = [1 +
λ(z − 1)

n
]n ≈ eλ(z−1) (43)

as n− >∞. Also this suggests the approximation(
n

k

)
pk(1− p)n−k ≈ (np)ke−np

k!
(44)

for n large, p small

Example Suppose that a dog is imperfect in counting pigs and independently identifies each incoming pig
with probability p. If the distribution of the number of incoming pigs in a unit time is a Poisson distribution
with parameter λ. What’s the distribution of the number of counted pigs?
Soln:

P (X = k) =

∞∑
n=0

P (N = n)P (X = k|N = n)

=

∞∑
n=k

λne−λ

n!

(
n

k

)
pk(1− p)n−k

= λk
e−λpk

n!

∞∑
n=k

(
n

k

)
λn−k(1− p)n−k

= (λp)ke−λ
∞∑
n=k

λn−k
(1− p)n−k

(n− k)!k!

=
λp)ke−λ

k!

∞∑
n=k

λn−k
(1− p)n−k

(n− k)!

=
λp)ke−λ

k!

∞∑
j=0

λj(1− p)j

j!

=
(λp)k

k!
e−λeλ(1−p)

=
(λp)k

k!
e−λp

(45)
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Here P (N = n) follows a Poisson distribution and P (X = k|N = n) follows Binomial distribution.

2.7 The Weak law of large numbers

Let X1, X2, ..., Xn be a sequence of uncorrelated random variables with the same mean m and the same
variance σ2. Then for every ε > 0,

lim
n−>∞

P (|Mn −m| ≥ ε) = 0 (46)

s where Mn = 1
n

∑n
i=1Xi. This justifies the use of sample mean as an estimate of the true mean. It can be

derived using the chebyshev inequality

P (|Mn −m| ≥ ε) ≤
var(Mn)

ε2
(47)

and

var(Mn) = var(
1

n

n∑
i=1

Xi) =
σ2

n
(48)

2.8 Conditional Probability

For conditional probability distributions, we use the notation

P (X ∈ B|Y ∈ C) =
P (X ∈ B, Y ∈ C)

P (Y ∈ C)
(49)

For conditional probability mass function, we use the notation

pxi|yj (yi|xi) =
p(xi, yj)

p(xi)
(50)

The bayes rule gives,

pY |X(yi|xi) =
pX|Y (xi, yj)pY (yj)

pX(xi)
(51)

The law of total probability gives,

P (Y ∈ C) =
∑
i

P (Y ∈ C|X = xi)P (X = xi) (52)

As an example consider the binary channel receiver design with input X and output Y and channel described
by the transition probabilities given as

P (Y = 1|X = 0) = p10, P (Y = 1|X = 1) = p11

P (Y = 0|X = 0) = p00, P (Y = 0|X = 1) = p00

Consider the problem of the receiver design, The receiver has access to the channel output Y and must
estimate the value of X. The decision rule with the the smallest probability of error is the maximum
aposteriori (MAP) rule. Having observed Y = j the MAP rule says to decide X = 1 if

P (X = 1|Y = j) ≥ P (X = 0|Y = j) (53)
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and decide X = 0 otherwise. Using the bayes rule the above relation simplifies to

P (Y = j|X = 1)P (X = 1) ≥ P (Y = j|X = 0)P (X = 0) (54)

Or,
P (Y = j|X = 1)P (X = 1)

P (Y = j|X = 0)P (X = 1)
≥ P (X = 0)

P (X = 1)
(55)

The left hand side of the relation is called the likelihood ratio and the right hand side is the threshold which
is 1 for the equiprobable case.

2.9 Conditional Expectation

The conditional expectation is given as

E[g(Y )|X = xi] =
∑
j

g(yj)PY |X(yi|xi) (56)

The substitution law for the conditional expectation is

E[g(X,Y )|X = xi] = E[g(xi, Y )|X = xi] (57)

The law of total probability for expectation is

E[g(X,Y )] =
∑
i

E[g(X,Y )|X = xi]PX(xi) (58)

and if g is a function of Y only

E[g(Y )] =
∑
i

E[g(Y )|X = xi]PX(xi) (59)

Note that if h(xi) = E[g(X,Y )|X = xi] then

E[g(X)] =
∑
i

h(xi)PX(xi) =
∑
i

E[g(X,Y )|X = xi]PX(xi) = E[g(X,Y )] (60)

i.e. h(X) is a random variable whose expectation is E[g(X,Y )].

3 Continuous Random Variables

3.1 Densities and Probabilities

X is called a continuous random variable if P (X ∈ B) =
∫
B
f(t)dt for some integrable function f which is

non-negative and integrates to one over the real line i.e.
∫
f(t)dt = 1. A non-negative function that integrates

to one is called a probability density function (pdf). If the set B is an interval such that B = [a, b],

P (a ≤ X ≤ b) =

∫ b

a

f(t)dt (61)

A random variable with uniform pdf is used to model experiments in which the outcome is constrained to
lie in a known interval say [a, b] and all outcomes are equally likely. Write f uniform[a,b] if a < b and
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f(x) =
1

b− a
(62)

An exponential random variable is used to model lifetimes such as how long a lightbulb burns. If X is
exponentially distributed with parameter λ,, we write X exp(λ) and the pdf is

f(x) = λe−λx (63)

If U uniform (0,1) then X = ln(1/U) is exp(1)

A double sided exponential is also called Laplace. It models the difference of two independent exponential
random variables. If X is a laplacian random variable, we write X Laplace(λ) and the pdf is

f(x) =
λ

2
e−λ|x| (64)

The Cauchy random variable models the quotient of independent gaussian random variables. If X is a cauchy
random variable with parameter λ > 0, we write X Cauchy (λ) and the pdf is

f(x) =
λ/pi

λ2 + x2
(65)

The gaussian or normal random variable is used to model the sum of many independent random variables.
They arise as noise models in communication and control systems. If X is a gaussian random variable with
mean µ and variance σ2, we write X N(µ, σ2) and the pdf is

f(x) =
1√

2πσ2
e−

1
2 ( x−µσ )2 (66)

If µ = 0 and σ2 = 1, we say f is a standard normal density. To show that normao density integrates to one
i.e. I =

∫
e−x

2/2dx =
√

2π, the trick to show I2 = 2/pi. The sum of squares of two independent normal
random variables, U2 + V 2 is exponential.

The rayleigh density is given as

f(x) = xe−x
2/2 (67)

If U and V are independent normal random variables,
√
U2 + V 2 is rayleigh distributed. If f is a probability

density function then for a real number c and a positive number λ the function given by

λf(λ(x− c)) (68)

is also a pdf and c is called the location parameter and λ is called the scale parameter. In the exponential,
laplace and cauchy densities the parameter λ is a scale parameter while in a gaussian density c = µ is the
location parameter and λ = 1/σ is the scale parameter.

The basic gamma density with parameter p > 0 is given by

gp(x) =
xp−1e−x

Γ(p)
(69)

where

Γ(p) =

∫ ∞
0

xp−1e−xdx (70)

is the gamma function.

The general gamma density is defined as gp,λ(x) = λgp(λx) with the following special cases of great important:
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• If p = m is a positive integer, gm,λ is called an Erlang(m,λ) density. The sum of m i.i.d. exp(λ)
random variables is an Erlang(m,λ) random variable.

• If p = k/2 and λ = 1/2, gp,λ is called a chi-squared density with k degrees of freedom. It arises as the
square of a normal random variable.

3.2 Transform Methods

Recall that the probability generating function applies only to non-negative integer valued random variables.
The moment generating function (mgf) of a real-valued random variable X is defined as

MX(s) = E[esX ] (71)

and generalizes the concept of probability generating function since if X is discrete taking only non-negative
integer values, then

MX(s) = E[esX ] = E[(es)X ] = GX(es) (72)

The moment generating function when differentiated k times and evaluated at s = 0 gives the kth moment

M
(k)
X (s)|s=0 = E[Xk] (73)

assuming MX(s) is finite in a neighborhood of s = 0 If X is a continuous random variable with density f ,
then the mgf is the laplace transform of f evaluated at −s.

MX(s) = E[esX ] =

∫ ∞
−∞

esxf(x)dx (74)

If MX(s) is finite for all real s in a neighborhood of the origin, say for −r < s < r for some 0 < r <∞ then
X has finite moments of all orders and the following calculation using the power series eε =

∑∞
n=0 ε

n/n! is
valid for complex s with |s| < r,

E[esX ] = E[

∞∑
n=0

(sX)n

n!
] =

∞∑
n=0

sn

n!
E[Xn] (75)

The moment generating function may not be defined for all values of s for some random variables, for instance
MX(s) =∞ for all real s 6= 0 for a cauchy random variable. A characteristic function however always exists.
The characteristic function of X is defined as

φx(µ) = E[ejµX ] (76)

Note that φx(µ) = MX(jµ). Also, since |ejµX | = 1, |φX(µ)| ≤ |ejµX | = 1. Hence the characteristic function
always exists and is bounded in magnitude by one. Note that if X is a continuous random variable with
density f then the characteristic function is simply the Fourier transform of the pdf.

φX(µ) =

∫ ∞
−∞

ejµXf(x)dx (77)

The inverse Fourier transform of the characteristic function gives the pdf,

f(x) =
1

2π

∫ ∞
−∞

e−jµXφX(µ)dµ (78)

And if X is an integer valued random variable then the characteristic function is a 2π-periodic Fourier series.
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φX(µ) = E[ejµX ] =
∑
n

ejµnP (X = n) (79)

And given the characteristic function the Fourier series coefficients are

P (X = n) =
1

2π

∫ π

−π
e−jµnφX(µ)dµ (80)

The moments can be obtained by the characteristic function as follows,

φ
(k)
X (µ)|µ=0 = jkE[Xk] (81)

assuming E[Xk] <∞

3.3 Expectation of multiple random variables

If X and Y are independent continuous random variables then the characteristic function of their sum
Z = X + Y is the product of the characteristic functions of X and Y

φZ(µ) = E[ejµX ]E[ejµY ] = φX(µ)φY (µ) (82)

and the density is the convolution of their densities,

fZ(z) =

∫ ∞
−∞

fX(z − y)fY (y)dy (83)

Using the fact that X ≤ |X| it can be shown that |EX| ≤ E[|X|]

3.4 Probability bounds

A result known as Chernoff bound, much stronger than Markov and Chebyshev Inequalities is given by

P (X ≥ a) ≤ infs>0[e−saMX(s)] (84)

where the infimum is over all s > 0 for which MX(s) is finite. For sufficiently large a the Chernoff bound
on P (X ≥ a) is always smaller than the bound obtained by the Chebyshev inequality which is smaller than
the one obtained by Markov inequality.

4 Cumulative Distribution Functions

4.1 Continuous random variables

The cummulative distribution function of a continuous random variable X is defined as

FX(x) = P (X ≤ x) =

∫ ∞
−∞

f(t)dt (85)
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The cdf of a gaussian random variable cannot be expressed in a closed form. If X N(µ, σ2) then

F (x) =

∫ x

−∞

1√
2πσ2

e−
1
2 ( x−µσ )2dt (86)

which can be expressed using the standard gaussian cdf

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt (87)

to get

F (x) = Φ(
x− µ
σ

) (88)

Since the gaussian cdf cannot be expressed in a closed form it can be expressed in terms of the error function
which is computed numerically and is given as

erf(y) =
2√
π

∫ y

0

e−t
2

dt (89)

Clearly Φ(y) = 1
2 [1 + erf(y/

√
2)]. And the function Q(y) = 1 − Φ(y) can be expressed in terms of the

complimentary error function

erf(y) = 1− erf(y) =
2√
π

∫ ∞
y

e−t
2

dt (90)

to get

Q(y) =
1

2
erfc(

y√
2

) (91)

The main application of the cdf is in finding the probability density of Y = g(X) given function g and
the density of X. This happens when the input to a system g is modeled as a random variable and the
system output is another random variable and we would like to compute probabilities involving Y . Clearly
P (X > x) = 1− FX(x) and the density can be recovered from the cdf by simple differentiation.

f(x) = F ′(x) (92)

If the function g(x) is continuous and strictly increasing then assuming h(y) = g−1(y) we have

fY (y) = fX(h(y)|h
′
(y)) =

fX(g−1(y))

|g′(g−1(y))|
(93)

The conditional cdf of Y given X is given by

FY |X(y|xi) = P (Y ≤ y|X = xi) (94)

If FY |X(y|xi) is differential with respect to y, this derivative is called conditional density of Y given X and
is denoted by fY |X(y|xi).

To simulate a random variable Y with the cdf F (y) generate a uniform random variable X uniform[0,1]
and apply the transformation Y = F−1(X). The cdf of Y then is

FY (y) = P (Y ≤ y) = P (F−1(X) ≤ y) = P (X ≤ F (y)) = F (y) (95)
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4.2 Discrete Random Variables

For a discrete random variable taking distinct values xi,

F (x) = P (X ≤ x) =
∑
i:xi≤x

P (X = xi) (96)

and for two adjacent values xj−1 < xj

P (X = xj) = F (xj)− F (xj−1) (97)

and for xj−1 ≤ x ≤ xj , F (x) = F (xj−1).

4.3 Mixed Random Variables

A random variable with density involving impulse terms in called a mixed random variable and the density
is said to e impulsive or the generalized density. It is of the form

fY (y) = fY (y) +
∑
i

P (Y = yi)δ(y − yi) (98)

where the yis are distinct points at which FY (y) has jump discontinuities. If X is a mixed random variable
then E[k(X)] is given by

E[k(X)] =

∫ ∞
−∞

k(x)f(x)dx =

∫ ∞
−∞

k(x)fX(x) +
∑
i

k(xi)P (X = xi) (99)

4.4 Functions of random variables

Consider systems modeled by a real-valued function g(x). The system input is a random variable X and the
system output is the random variable Y = g(x). FY (y) is then given as

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ∈ By) (100)

where By = {x ∈ R|g(x) ≤ y}. And if X has the density fX(x) then

FY (y) = P (X ∈ By) =

∫
By

fX(x)dx (101)

The set By can usually be identified by sketching the function g(x).

4.5 Properties of Cdfs

Let X be a real-valued random variable with cdf F (x). Then F satisfies the following:

• 0 ≤ F (x) ≤ 1

• if a < b then P (a < X ≤ b) = F (b)− F (a)

• F is nondecreasing
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• limx−>∞F (x) = 1

• limx−>−∞F (x) = 0

• P (X = x0) = F (x0)− F (x0−)

Also note that P (X > x0) = 1 − F (x0) and P (X/gex0) = 1 − F (x0−). However if F is continuous at x0,
F (x0−) = F (x0) and so P (X ≥ X0) = 1− F (x0) and P (X = x0) = 0.

4.6 The Central Limit Theorem

Let X1, X2, ... be independent identically distributed random variables with finite mean µ and finite variance
σ2. If Yn is defined as

Yn =
1√
n

n∑
i=1

(
Xi − µ
σ

) (102)

which has zero mean and unit variance, then

limn−>∞FYn(y) = Φ(y) (103)

where Φ(y) =
∫ y
−∞

1√
2π
e−t

2/2dt is the standard normal cdf. In practice, for fixed n, the approximation is

better for values of y near the origin than for values of y too far away from the origin. The derivation of the
center limit theorem is as follows: Assume X1, X2, ..., Xn is a sequence of i.i.d. random variables with mean
µ and variance σ2. Let Zi = (Xi − µ)/σ. The Zi are zero mean and unit variance i.i.d. random variables
with the commom characteristic function φZ(µ) = E[ejµZi ]. Since,

Yn =
1√
n

n∑
i=1

Zi (104)

we can write the characteristic function of Yn as

φYn(ν) = E[ejνYn ] = E[e
(j ν√

n

∑n
i=1 Zi)] = φZ(

ν√
n

)n (105)

And using the expansion for the exponential function

φZ(
ν√
n

) = E[ej(ν/
√
n)Zi] = E[1+j

ν√
n
Zi+

1

2
(j

ν√
n
Zi)

2+R(j
ν√
n
Zi)] = 1+0−1

2
(
ν2

n
)2+E[R(j

ν√
n
Zi)] = 1−ν

2/2

n
(106)

Hence,

φYn(ν) = φZ(
ν√
n

)n = (1− ν2/2

n
)2− > e−ν2/2

And since the characteristic function converges to that of the standard gaussian random variable, so does
the cdf FYn(y)− > Φ(y)

4.7 Reliability

Let T be the lifetime of a device or system. The reliability function of the device or system is defined by

R(t) = P (T > t) = 1− FT (t) (107)
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which implies that the reliability at time t is the probability that the lifetime is greater than t.

The mean time to failure (MTTF) is the expected lifetime, E[T ]. Since lifetimes are non-negative.

E[T ] =

∫ ∞
0

P (T > t)dt =

∫ ∞
0

R(t)dt (108)

The failure rate of a device or system with lifetime T is

r(t) = limδt−>0
P (T ≤ t+ δt|T > t)

δT
= −R(t+ δt)−R(t)

R(t)δt
= −R

′(t)

R(t)
=

fT (t)∫∞
t
fT (θ)dθ

(109)

So the failure rate is completely determined by the density fT and the converse is also true,

fT (t) = r(t)e−
∫ t
0
r(τ)dτ (110)

5 Bivariate random variables

5.1 Joint and Marginal Probabilities

The main focus here is the study of pairs of continuous random variables that are not independent. Consider
the following functions of two random variables X and Y

X + Y,XY,max(X,Y ),min(X,Y )

These forms appear in practice-in a telephone channel the signal X is corrupted by additive noise Y ; in a
wireless channel the signal X is corrupted by fading i.e. multiplicative noise; if X and Y are the traffic rates
at two different routers of an ISP then we desire max(X,Y ) ≤ u where u is the router capacity; if X and
Y are sensor voltages we may need to trigger the event min(X,Y ) ≤ v for some threshold v. THe cdfs of
these functions can be expressed in the form P (X,Y ) ∈ A for various sets A ∈ R2.

5.1.1 Product set and marginal probabilities

The cartesian product of two univariate sets B and C is defined as

B × C = {(x, y)|x ∈ Bandy ∈ C} (111)

Thus,

P (X ∈ B, Y ∈ C) = P9(X,Y ) ∈ B × C) (112)

The marginal probability can then be written as

P (X ∈ B) = P ((X,Y ) ∈ B ×R) (113)

5.1.2 Joint and marginal Cumulative Distribution Functions

The joint cumulative distribution function of X and Y is defined by

FX,Y (x, y) = P (X ≤ X,Y ≤ y) = P ((X,Y ) ∈ (−∞, x]× (−∞, y]) (114)
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The joint cdf lets us compute P ((X,Y ) ∈ A) for any set A. In particular, consider the rectangle formula.
The P (a < X ≤ b, c < Y ≤ d) is given by

FXY (b, d)− FXY (a, d)− FXY (b, c) + FXY (a, c) (115)

The marginal cdf FX can be obtained from the joint cdf as

FX(x) = limy−>∞FXY (x, y) = FXY (x,∞) (116)

5.1.3 Independent Random Variables

The random variables X and Y are independent if and only if for all sets B and C,

P (X ∈ B, Y ∈ C) = P ((X,Y ) ∈ B × C) = P (X ∈ B)P (Y ∈ C) (117)

or in other words, if and only if the join cdf factors,

FXY (x, y) = FX(x)FY (y) (118)

5.2 Jointly Continuous Random Variables

The random variables X and Y are jointly continuous with joint density fXY (x, y) if

6 Distribution Derived From the Normal

6.1 chi-square,t, and F distributions

6.1.1 Chi-square distribution

If Z ∼ N(0, 1), the distribution of U = Z2 is called the chi-square distribution with 1 degree of freedom, χ2
1

For chi-square random variable with n degree of freedom, χ2
n distribution can be understood as the dis-

tribution that results from summing the squares of n independent random variables ∼ N(0, 1)

V =

n∑
i

Z2
i

6.1.2 t distribution

If U1, U2, ..., Un are independent chi-square random variables with 1 degree of freedom, the distribution of
V = U1 +U2 + ...+Un is called the chi-square distribution with n degrees of freedom, χ2

n.Now, if Z ∼ N(0, 1)
and V ∼ χ2

n and Z and V are independent, then the distribution of Z/
√
V/n is called the t distribution

with n degree of freedom. t distribution is very close to standard normal distribution for more than 20 or
30 degrees of freedom.
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6.1.3 F distribution

F distribution is based on chi-square random variables. If X and Y are independent chi-square variables

with m and n degrees of freedom, respectively. The distribution of W = X/m
Y/n is called the F distribution

with m and n degrees of freedom, Fm,n

6.2 Degree of Freedom

1. Why sample variance has n− 1 in the denominator?

This n− 1 is the degree of freedom (DOF), representing the number of independent pieces of information on
which the estimate is based. In general, the DOF for an estimate is equal to the number of observations/r.v.s
in the sample minus the number of parameters estimated en route to the final parameter that we want to
estimate. For example, we have two random variables in a sample (X1 = 8, X2 = 5) and we want to find
the sample variance s2 as an estimate of σ2. But before we can calculate the sample variance, we had to
estimate the sample mean (µ̂) because we need µ̂ to calculate the sample variance. Therefore, the estimate
of the population variance has 2 − 1 = 1 DOF. If we had 100 observations/r.v.s in our sample, then our
estimate of variance would have had 99 DOF. Therefore, the DOF of an estimate of variance is equal to
n− 1, where n is the number of observations.

s2 =

∑
i(Xi − µ̂)2

n− 1

7 Survey Sampling

8 Parameter Estimation

8.1 Parameter Estimation

1. Why does one need to fit probability laws to data?
The form of a probability distribution and the parameters of that distribution may be of scientific interest
For descriptive purposes as a method of data summary or compression
Distributions once generated, can be used in various simulation (pricing, planning)
2. The observed data will be regarded as realizations of random variables, X1, X2, , Xn with a joint distri-
bution f(x|θ); an estimate of theta, will be a function of X1, X2, , Xn and is thus a random variable with a
probability distribution ( sampling distribution). We often use standard error to quantify the variability of
the estimate.
3. Two approaches for forming estimates
a. the method of moments
b. the method of maximum likelihood (generally useful)
4. Advanced theory of statistics is heavily concerned with optimal estimation. The essential idea is that wed
like to chose the estimation procedure that gives an estimate whose sampling distribution is most concen-
trated around the true parameter value.



26

8.2 The Method of Moments

1. What’s a moment of a probability law and its relation to the moment-generating function?
The kth moment of a probability law is defined as: µk = E(Xk), where X is a random variable following that
probability law. If X1, X2, , Xn are i.i.d. random variables (drawn multiple times) from that distribution,
the kth sample moment is defined as

µ̂k =
1

n

∑
i

Xk
i

For example, we can write
∑
iX

2
i in terms of the 2nd sample moment, i.e.,

∑
iX

2
i = nµ̂2. We can view µ̂k

as an estimate of µk, which is equal to E[Xk].
The moment-generating function of a random variable X is M(t) = E(etX) and in a discrete case, M(t) =∑
x e

txp(x)
And their relation is
M (k)(0) = µk = E(Xk)
2.What’s the essence of the method of moments?
The MoM estimates parameters by finding expressions for them in terms of the lowest possible order moments
and then substituting sample moments into the expressions.
3. Stepwise, what is the procedure of MOM?
Say if there are two parameters in the distribution that you want to fit.
The first step is to express these parameters using real moments:
θ1 = f1(µ1, µ2) θ2 = f2(µ1, µ2)
The next step is to use sample moments to substitute the real moments:
θ1 = f1(µ̂1, µ̂2) θ2 = f2(µ̂1, µ̂2)
Usually the first step involves finding expressions for the moments in terms of the parameters and then
invert. 4. How stale is the estimate?
Standard statistical technique is to derive the sampling distribution of the estimate or an approximation to
that distribution.
As a concrete example, say we have a number of samples Xi, which are independent Poisson random variables
with parameter λ0. We want to estimate the parameter λ. Naturally, we’d use the first moment of the Poisson

distribution to do so, namely λ̂ = E(X) =
∑
Xi
n . Now if we let S =

∑
Xi, then the parameter estimate

λ̂ = S
n would be a random variable, the distribution of which is called its sampling distribution. Note

that, the distribution of the sume of independent Poisson random variables is Poisson distributed, so the
distribution of S is Poisson(nλ0). Thus, the sampling distribution’s pdf is

P (λ̂) = P (S = nλ̂) =
(nλ0)nλ̂e−nλ0

nλ̂

Since S is Poisson, its mean and variance are both nλ0, so

E(λ̂) =
1

n
E(S) = λ0

V ar(λ̂) =
1

n2
V ar(S) =

λ0

n

Now it comes the prerequisite, if nλ0 is large (how large is large so Poisson becomes normal? λ needs to be

around 1000), we know the distribution of S is approximately normal and so is λ̂ with mean and variance
above.
5. What do you mean when you say the estimate is unbiased? It means that the sampling distribution is
centered at the true parameter, in the above example, λ0, or E(λ̂) = λ0

6. What is standard error in this example?
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The standard deviation of the sampling distribution is called the standard error. Specifically, the standard
error of λ̂, which is the statistic that we are estimating.

σλ̂ =

√
λ0

n

7. What is the estimated standard error? We normally do not know the sampling distribution or the
standard error because we do not know λ0, the true value of the parameter that we want to estimate. So we
use the sample estimate, λ̂, to assess the variability of our estimate.

sλ̂ =

√
λ̂

n

8.3 The Method of Maximum Likelihood

1. What’s the essence of the method of maximum likelihood?

We want to find a parameter θ that maximizes P (data|θ) by taking derivative w.r.t. it and setting the
derivative to 0; Suppose that random variables X1, ..., Xn have a joint density function f(x1, x2, ..., xn).
Given observed values Xi = xi, where i = 1...n, the likelihood of θ as a function of x1, ..., xn is

lik(θ) = f(x1, x,2, ..., xn|θ)

8.3.1 Large Sample Theory for Maximum Likelihood Estimates

Large sample theory states that using a large sample size, the sampling distribution of the maximum
likelihood estimate is approximately normal with mean θ0 and variance 1/[nI(θ0)]. However, this is just
a limiting result, which means that it holds as the sample size tends to infinity, and we say that the mle
is asymptotically unbiased and refer to the variance of the limiting normal distribution as the asymptotic
variance of the mle, where I(θ0) is specified as follows:

I(θ0) = E[
∂

∂θ0
logf(X|θ0)]2 = −E[

∂2

∂θ2
0

logf(X|θ0)]

This is also called the Fisher Information. Note that here the X is just one random variable not a random
vector. In other words, f(X|θ0) is just the pdf of the underlying random variable not the likelihood function.
The Cramer-Rao lower bound on the variance of the estimator is just 1/nI(θ0). But if we substitute f(X|θ0)

by the likelihood of the data,f( ~X|θ0). The Cramer-Rao lower bound on the variance of the estimator be-
comes 1/I(θ0). An example problem setup is as follows:

For an i.i.d. sample of size n, the log likelihood is

l(θ) =
∑
i

logf(xi|θ)

We denote the true value of θ by θ0. And, the large sample theory says that under reasonable conditions
θ̂mle is a consistent estimator of θ0; that is, θ̂mle converges to θ0 in probability as n approaches infinity.
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8.3.2 Confidence Intervals for Maximum Likelihood Estimates

A confidence interval for θ is an interval based on the sample values used to estimate θ. That is, we develop
confidence interval for θ based on θ̂. Since these sample values are random, the interval is thus also random
and the probability that it contains θ is called the coverage probability of the interval. For example, a 95
percent confidence interval for θ is a random interval that contains θ with probability 0.95. A confidence
interval quantifies the uncertainty of a parameter estimate.

There are three methods to form confidence intervals for mles.

• Exact methods

• Approximations based on the large sample properties of mles

• Bootstrap confidence intervals

Exact method

For an normally i.i.d. sample X1, X2, ..., Xn, we know the maximum likelihood estimates of µ and σ are as
follows:

µ̂ = X̄

σ̂2 =
1

n

n∑
i

(Xi − X̄)2

The exact method assumes that the confidence interval for µ is based on the fact that

√
n(X̄ − µ)

S
∼ tn−1

Where S is the population standard deviation, i.e., S2 = σ2. So based on this, we can have

P (−tn−1(α/2) ≤
√
n(X̄ − µ)

S
≤ tn−1(α/2)) = 1− α

From this, we can manipulate the formula to get the confidence interval as follows:

P (X̄ − S√
n
tn−1(α/2) ≤ µ ≤ X̄ +

S√
n
tn−1(α/2)) = 1− α

According to the equation, the probability that µ lies in the interval is 1 − α. Note that the confidence
interval is random.

Now let’s calculate the confidence interval for σ2. We know that

nσ̂2

σ2
∼ χ2

n−1

Again, we have

P (χ2
n−1(1− α/2) ≤ nσ̂2

σ2
≤ χ2

n−1(α/2)) = 1− α

And after manipulation we can find the confidence interval for σ2.

But note that exact methods such as the one illustrated here are the exception rather than the rule in



29

practice for constructing confidence intervals. To construct an exact confidence interval we need detailed
knowledge of the sampling distribution. In other words, we need to express the estimated quantify in terms
of some random variable of which we know its distribution law so we can express its variance. For example,
θ̂ = X/n. The variance of θ̂, which is what we usually are interested, is equal to the variance of X divided
by n2. But you need to know closed form distribution of X so you know its variance. X is better be of
some familiar distribution like binomial, Poisson, etc. A second method of constructing confidence interval
is based on the large sample theory.

Approximations based on the large sample properties of mles

If we can’t know the sampling distribution like we did for X above, then the large sample properties of
mles comes into play. According to the large sample theory, the distribution of

√
nI(θ0)(θ̂ − θ0) is approx-

imately the standard normal distribution. Since θ0 is unknown, we will use I(θ̂) in place of I(θ0). Again,
apply the confidence interval formula, we get

P (−z(α/2) ≤
√
nI(θ0)(θ̂ − θ0) ≤ z(α/2)) ≈ 1− α

where z(.) is critical value for the standard normal distribution, i.e., 1.96 for 95 percent confidence interval.

Bootstrap confidence intervals

Again, suppose that θ̂ is an estimate of the true parameter θ0 and suppose that we know the distribu-
tion of their difference ∆ = θ̂ − θ0. So we can express the CI as follows:

P (δlowerPercentile ≤ θ̂ − θ0 ≤ δupperPercentile) = 1− α

From this we can then calculate the confidence interval for θ0. But this assumes that the distribution of
∆ = θ̂ − θ0 is known, which is typically not the case because θ0 is not known. But as before we could use θ̂
in place of θ0 and generate many samples from a distribution with value θ̂. And, from each sample construct
an estimate of θ, say θ∗. Then the distribution of θ̂−θ0 is approximated by that of θ∗− θ̂. And the quantiles
of which are then used to form an approximate confidence interval.

8.3.3 The Bayesian Approach to Parameter Estimation

1. What’s the Bayesian approach to parameter estimation and how it’s different from the Frequentist ap-
proach?

Suppose that you have a sample of random variables X1, X2, ..., Xn, and you are trying to estimate a param-
eter, θ, of the distribution from which the sample was drawn (each item of the sample was individually drawn
if the sample is said to be i.i.d.). In Bayesian approach, you would assume that the unknown parameter θ is
treated as a random variable which has a distribution, called the prior distribution, representing what you
know about the parameter before observing the sample. This framework is in contrast with the approaches
(often called the Frequentist approach) described in previous sections, in which θ was treated as an unknown
constant. For a given value, Θ = θ, the data now have the probability distribution fX|Θ(x|θ). And, the joint
probability of X and Θ is thus,

fX,Θ(x, θ) = fX|Θ(x|θ)fΘ(θ)

2. What’s the poster distribution and what does it represent for?

The posterior distribution is:

fΘ|X(θ|x) =
fX,Θ(x, θ)

fX(x)
=

fX,Θ(x, θ)∫
θ
fX,Θ(x, θ)dθ
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It represents what we now know about Θ after we observer the data X.

3. What’s the posterior mode?

The most probable value of Θ in fΘ|X(θ|x).

4. Given a variety of possible estimates, how would you choose which to use?

Chose one whose sampling distribution is most highly concentrated about the true parameter value by
mean squared error.

MSE(θ̂) = E[(θ̂ − θ0)2] = V ar(θ̂) + (E(θ̂)− θ0)2

If the estimate θ̂ is unbiased which means E[θ̂] = θ0, then the MSE is just the variance.

5. What is Cramer-Rao Inequality?

Let X1, X2, ..., Xn be i.i.d. with density function f(x|θ). Let T = t(X1, .., Xn) be an unbiased estimator,θ,.
Then, under smoothness assumptions on the density function,

V ar(T ) ≥ 1

nI(θ)

6. What is a sufficient statistic and give an example?

A function T (X1, X2, ..., Xn) is called a sufficient statistic of θ if all the information in the sample about θ
is contained in T .

9 Testing Hypotheses and Assessing Goodness of Fit

1. What is Hypotheses testing?

Use likelihood ratio or posterior probability ratio to assess the evidence for each hypothesis.

2. What is type I error, significant level, type II error, power of the test, and rejection region?

• Type I error: reject H0 when H0 is true.

• Significance level: The probability of type I error.

• Type II error: accept H0 when H1 is true.

• Power of the test: 1-P(Type II error)

• Rejection region: The test statistics that lead to rejection of the null hypothesis are called rejection
region.

3. What is the Neyman-Pearson Lemma?

All other tests (those that are not based on likelihood ratio) that can reach smaller significant levels have
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power less or equal to that of the likelihood ratio test. Alternatively, among all tests with significance level
α, the test that rejects for small values of the likelihood ratio is most powerful.

4. Given a significance level α, how to find its corresponding rejection region?

Let X1, ..., Xn be a random sample from a normal distribution with variance σ2. Consider two simple
hypotheses: H0 : µ = µ0, H1 : µ = µ1, where µ0 and µ1 are given constants. If we want to find the threshold
value to reject small likelihood ratios, we first need to calculate the likelihood ratio and analyze when it’s
small. For example,

f0( ~X)

f1( ~X)
=
exp[ −1

2σ2

∑
i(Xi − µ0)2]

exp[ −1
2σ2

∑
i(Xi − µ1)2]

After we cancel the multipliers of the exponential, small values of the likelihood ratio is

2nX̄(µ0 − µ1) + nµ2
1 − nµ2

0

Now, if (µ0 and µ1 are given) (µ0 − µ1) < 0, the likelihood ratio is small if X̄ is large. And the significance
level is the probability of rejecting H0 when H0 is true. Now, let’s rethink our goal which is reject H0 for
small likelihood values, which can be achieved by having a small threshold because we reject when LR is
smaller than something such that LR < c. But since the threshold of the LR and the threshold(denote it
by x0) of X̄ have an inverse relationship,if we want to reject H0 for small likelihood ratios, we would then
need X̄ > x0 for a x0 as big as possible. Because a larger x0 for X̄ means a smaller threshold on the actual
likelihood ratio (rejection corresponds to LR < c). Thus, a smaller threshold would correspond to smaller
likelihood ratio values. Thus, we choose x0 to give the test the desired significance level α.

Under H0 in this example, the null distribution of the test statistic, X̄, is a normal distribution with

mean µ0 and variance σ2

n , so x0 can be chosen from tables of the standard normal distribution.

P (X̄ > x0) = P (
X̄ − µ0

σ
√
n

>
x0 − µ0

σ
√
n

)

such that
x0 − µ0

σ
√
n

= z(α)

And solve for x0.

5. Why the Neyman-Pearson Lemma is of little direct use?

Because the case of testing a simple null hypothesis versus a simple alternative is rare in reality. More
often, the hypothesis does not completely specify the probability distribution (hypothesis is vague in a
sense), the hypothesis is called a composite hypothesis.

6. Do you need to know distribution of both null and alternative hypothesis to use the Neyman-Pearson
Lemma?

No. One of the strengths of the NP approach is that only the distribution under the null hypothesis in
needed in order to construct a test.

7. How to choose null hypotheses?



32

The general rule of choosing null hypothesis is that the null is always the normal one compared to the
alternative and has a simpler form than the alternative. For example, we can assume that the null follows
a specific form of distribution like Poisson and the alternative does not. And, the null has no extraordinary
capability and the alternative dose.

8. What is uniformly most powerful tests?

As an example, a most powerful test rejects for X̄ > x0, where x0 only depends on µ0, σ, n but not on
the alternative hypothesis µ1. Because the test is most powerful and is the same for every alternative, it is
uniformly most powerful.

9. What’s the duality of confidence interval ad hypothesis tests?

For example, we have a test H0 : µ = µ0 and are given a random sample X1, ..., Xn to conduct the hy-
pothesis test. In a confidence interval sense, we can assume that µ0 in the example is the true population
mean that we want to estimate using the sample data. And, in the context of hypothesis testing, we can
say that a 100(1 − α) percent confidence interval for µ0 consists of all those values of µ0 for which the
hypothesis that µ = µ0 will be accepted at level α. To derive such confidence interval, we first need to find
the acceptance region of the test.

9.1 Specification of the Significance Level and the Concept of a p-value

The theory requires that we specify the significant level, α, in advance of analyzing the data. In practice,
we are often costumed to choose small values for the probability of type I error such as 0.01 and 0.05.

For example, a man is asked to identify the suits of 20 cards drawn randomly with replacement from a
52 card deck. The rejection region for a significance level α = 0.05 is T ≥ 8, i.e., P (T ≥ 8) = 0.05, meaning
that the probability that we falsely reject the null hypothesis (the man has no extraordinary ability ) when
more than 7 cards are identified correctly is 0.05. Now, the guy actually identified 9 cards correctly (called
the evidence), if now we use 9 as the threshold to calculate the significant level (probability of type I error
: reject null when null is true), we would have P (T ≥ 9) = 0.041, and we call this probability the p-value,
which is used to summarize the evidence against the null hypothesis. I think that the p-value is to quantify
the credibility of the observed data. In other words, if placing the observed data in the null hypothesis,
the probability that we would falsely do something (reject H0) is greater than 0.05, then we would question
the credibility of the observed data. Normally, if the p-value is less than 0.05 we consider the observation
to be trustful. In the example above, if 9 cards were identified correctly, the p=value is 0.041. And if
10 cards were identified correctly, the p-value would be 0.014, representing a lower chance of falsely reject-
ing the null hypothesis. That is, the smaller the p-value, the stronger the evidence against the null hypothesis.

The p-value is the probability of getting a result (think of repeating the experiment) that is equal or more
extreme (i.e., get 11 cards correct) than the one that’s actually observed under the condition that the null
hypothesis is true.

9.2 Generalized Likelihood Ratio Tests

The generalized likelihood ratio tests are mainly for situations in which the hypotheses are not simple.
Specifically, we assumes that the observed data ~X = (X1, X2, ..., Xn) has a joint density or frequency
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function f( ~X|θ). Then H0 specifies that θ ∈ ω0, where ω0 is a subset of the set of all possible values of θ,
and H1 specifies that θ ∈ ω1, a different subset of possible values of θ. Note that ω0 and ω1 are disjoint. If
the hypotheses are composite (a hypothesis does not completely specify the probability distribution), each
likelihood is evaluated at the value of θ that maximizes it, yielding the generalized likelihood ratio

Λ′ =
maxθ∈ω0

[lik(θ)]

maxθ∈ω1
[lik(θ)]

=
maxθ∈ω0

P ( ~X|θ)
maxθ∈ω1

P ( ~X|θ)
Or,

Λ =
maxθ∈ω0

[lik(θ)]

maxθ∈Ω[lik(θ)]

Where Ω = ω0 ∪ ω1. Here small values of Λ favors rejection of H0, for example, Λ ≤ λ0. And, the threshold
is chosen so that P (Λ ≤ λ0|H0) = α, which is the desired significance level of the test.

1. Construct a generalized likelihood ratio test for testing a normal mean. For example, we have a sample
X1, X2, ..., Xn with pdf N(µ, σ2), where σ is known. We wish to test H0 : µ = µ0 against H1 : µ 6= µ0. Here
µ0 is a pre-specified scalar.

We realize that in this example, the role of θ is played by µ, and ω0 = {µ0}, ω1 = {µ|µ 6= µ0}, and
Ω = {−∞ ≤ µ ≤ ∞}. We first calculate the numerator of Λ as ω0 only has one member. We have

1

(σ
√

2π)n
e−

1
2σ2

∑
i(Xi−µ0)2

For the denominator, we have a lot of µs to test and we want evaluate the likelihood using the one that
maximize the likelihood. We know from previous knowledge that the µ that maximizes the likelihood is the
mle of X̄. So we have

1

(σ
√

2π)n
e−

1
2σ2

∑
i(Xi−X̄)2

After we stack the likelihood ratio, we would get

Λ = exp(− 1

2σ2
[
∑
i

(Xi − µ0)2 −
∑
i

(Xi − X̄)2])

Recall that we want to reject small values of Λ, that is we reject Λ ≤ λ0. Realize that this is equivalent for
rejecting large values of

−2logΛ = − 1

σ2
[
∑
i

(Xi − µ0)2 −
∑
i

(Xi − X̄)2]

Plug in the identity, ∑
i

(Xi − µ0)2 =
∑
i

(X1 − X̄)2 + n(X̄ − µ0)2

into the formula above, we see that the likelihood ratio test rejects for large values of −2logΛ = (X̄−µ0)2

σ2/n ,

which follows chi-square distribution with 1 degree of freedom. Also, realize that underH0, X̄ ∼ N(µ0, sigma
2/n),

which implies that
√
n(X̄ − µ0)/σ ∼ N(0, 1) and hence its square, (X̄−µ0)2

σ2/n = −2logΛ ∼ χ2
1. Now, we know

the null distribution of the test statistic (−2logΛ), we can know find the rejection region for any significance
level α. The test rejects when

(X̄ − µ0)2

σ2/n
> χ2

1(α)

Or,

|X̄ − µ0| ≥
σ√
n
z(α/2)

As a chi-square random variable with 1 DOF is the square of a standard normal random variable.
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9.3 Goodness of fit

The goal of a goodness of fit metric is to measure how precise is the estimate (using the current data/sample).
In other words, do we have faith in the accuracy of the first, second, third, or fourth decimal place? To
answer this questions, we could find out the variance of the estimate by using its sampling distribution
(often not available). We may use bootstrap to find the approximated sampling distribution. Another way
is to use chi-square. Below is an example that we can use chi-square to measure the goodness of fit but in-
stead we will use the likelihood ratio and at the end prove that the two test statistics are approximately equal.

For example, we have a theory that states that the genotypes AA, Aa, and aa occur in a population
with frequencies (1− θ)2, 2θ(1− θ), and θ2. And we have a set of data that says in a total of 1029 people,
there are 342 AA, 500 Aa, and 187 aa. Here we can assume a 3 variable multinomial distribution with
p1 = (1− θ)2,p2 = 2θ(1− θ),and p3 = θ2. We can write down the likelihood of this data and calculate θ̂mle.
Note that we are assuming that our p’s depend on specific forms of θ. But they really don’t have to be,
right? So we can design a generalized likelihood ratio test as follows:

Λ =
maxp∈ω0

( n!
x1!...xm! )p1(θ)x1 ...pm(θ)xm

maxp∈Ω( n!
x1!...xm! )p

x1
1 ...pxmm

such that the denominator’s p is not restricted to follow any form of theta. In other words, in H0, p(θ) and
in H1, p is free-they can be any value as long as they sum up to 1. The xi’s are the observed counts in the
m cells.

By the definition of the maximum likelihood estimate, this numerator likelihood function is maximized when
θ̂ is the maximum likelihood estimate of θ. The corresponding probability will be denoted by pi(θ̂). And,
since the probabilities are unrestricted under H1, the denominator is maximized by the unrestricted (no
specific form on p to follow; it purely goes with the data) mle’s, or

p̂i =
xi
n

The likelihood ratio is, therefore,

Λ =
( n!
x1!...xm! )p1(θ̂)x1 ...pm(θ̂)xm

( n!
x1!...xm! )p̂1

x1 ...p̂m
xm

And,

−2logΛ = 2
∑
i

Oilog(
Oi
Ei

)

where Oi = np̂i and Ei = npi(θ̂) denote the observed and expected counts, respectively.

Now if we use Taylor series, we get

−2logΛ ∼ 2n
∑
i

[p̂i − pi(θ̂)] + n
∑
i

[p̂i − pi(θ̂)]2

pi(θ̂)

The first term is zero since probabilities sum to 1 and the second term is just

∑
i

[xi − npi(θ̂)]2

npi(θ̂)
=
∑
i

(Oi − Ei)2

Ei
= χ2
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Now we have showed that the two test statistics are approximately the same.

If we want to use Pearson’s chi-square test, and therefore, χ2 as our test statistic. We first need to know
under H0 what distribution that it follows. The null distribution of χ2 is approximately chi-square with 1
DOF (there are two independent cells, and one parameter, θ has to be estimated on the way before estimat-
ing the final estimate, p). With a significance level of 0.05, we can then find out the rejection region for this
test is χ2 > 3.84. And from the data, we have

χ2 =
∑ (O − E)2

E
= 0.0319

Where the E is the expected counts computed using the estimated parameter and O is the observed counts.
So the null hypothesis is not rejected. And in comparison, the likelihood ratio test statistic is

−2logΛ = 0.0319

The two tests lead to the same conclusion.

10 Comparing Two Samples

In many experiments, the two samples may be regarded as being independent of each other. For example,
a sample of subjects may be assigned to a particular treatment (using drug A), and another independent
sample may be assigned to a placebo treatment. We can have several ways to construct the groups. 1) we
can randomly assign individuals to the placebo and treatment groups. 2) We can create some pairing such
as each person receiving the treatment were paired with an individual of similar weight in the control group.

1. What statistical model do we need to model the observations from the placebo and treatment group?

The observations from the control group are modeled as independent random variables with a common
distribution, F , and the observations from the treatment group are modeled as being independpent of each
other and of the controls and as having their own common distribution function, G. In many experiments,
the primary effect of the treatment is to change the overall level of the responses, so that analysis focuses
on the difference of means or other location parameters of F and G.

2. What distributions should you assume for F and G and how to measure the effectiveness of the drug?

For the treatment group, we can assume that a sample X1, ..., Xn, is drawn from a normal distribution
that has mean µX and variance σ2, and that an independent sample for the placebo group, Y1, ..., Ym, is
drawn from another normal distribution that has mean µY and the same variance, σ2. The effectiveness of
the treatment is characterized by the difference µX − µY . A nature estimate of muX − µY is X̄ − Ȳ , which
is the mle.

3. What distribution does X̄ − Ȳ follow?

Since X̄−Ȳ may be expressed as a linear combination of independent normally distributed random variables,

it is normally distributed, X̄ − Ȳ ∼ N(µX − µY , (σ
2

n + σ2

m ))

. 4. What is the confidence interval for µX − µY ?

(X̄ − Ȳ ) +−z(α/2)

√
σ2

n
+
σ2

m
)
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I.e., the true difference, µX − µY , is 95 percent within the interval.

5. Is σ2 generally known?

No. We use the pooled sample variance, calculated from the samples, to estimate σ2.

s2
P =

(n− 1)s2
X + (m− 1)s2

Y

(m+ n− 2)

where s2
X =

∑
i(Xi−X̄)2

n−1 .

6. What is the test statistics that we should use for hypothesis testing and for forming confidence in-
terval?

σ2

11 Introduction to random process

A random process is a collection of random variables that are defined on a common probability space. A
random process is mathematically represented by the collection

{Xt, t ∈ I}

where Xt denotes the tth random variable in the process, and the index t runs over an index set I which
is arbitrary. For example, consider the experiment consisting of three coin tosses. A suitable sample space
would be

Ω = {TTT, TTH, THT,HTT, THH,HTH,HHT,HHH}

On this sample space, we can define several random variables. For n = 1, 2, 3, put Xn(ω) = 0, if the nth
component of ω is T, 1, if the nth component of ω is H

Then, for example, X1(THH) = 0, X2(THH) = 1, and X3(THH) = 1. For a fixed ω, we can plot the
sequence X1(ω) , X2(ω) , X3(ω) , called the sample path corresponding to ω. Every time the sample point
ω changes, the sample path also changes.

In general, a random process Xn may be defined over any range of integers n, which we usually think
of as discrete time. It is also useful to allow continuous-time random processes Xt where t can be any real
number, not just an integer. Thus, for each t, Xt(ω) is a random variable, or function of ω. However, as in
the discrete-time case, we can fix ω and allow the time parameter t to vary. So there are two ways to think
about a random process. The first way is to think of Xn or Xt as a family of random variables, which by
definition, is just a family of functions of ω. The second way is to think of Xn or Xt as a random waveform
in discrete or continuous time, respectively.

asdasdas

asdasdasd
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From the theoretical relationship, we have

AUC =
1

2
+

1

2
erf(

SNR

2
)

Rearranging the formula to express SNR in terms of a function of AUC

SNR = 2erf−1(2AUC − 1)

From the fitted function, we can have

SNR2 =
AA ∗K1

AA ∗K2 +K3

Rearranging the above function, we have

AA =
SNR2 ∗K3

K1 − SNR2 ∗K2

Plug in the SNR function, we finally get

AA =
(2erf−1(2AUC − 1))2 ∗K3

K1 − (2erf−1(2AUC − 1))2 ∗K2


