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A B S T R A C T

In the last decade, convolutional neural networks (ConvNets) have been a major focus of research in medical
image analysis. However, the performances of ConvNets may be limited by a lack of explicit consideration
of the long-range spatial relationships in an image. Recently, Vision Transformer architectures have been
proposed to address the shortcomings of ConvNets and have produced state-of-the-art performances in many
medical imaging applications. Transformers may be a strong candidate for image registration because their
substantially larger receptive field enables a more precise comprehension of the spatial correspondence between
moving and fixed images. Here, we present TransMorph, a hybrid Transformer-ConvNet model for volumetric
medical image registration. This paper also presents diffeomorphic and Bayesian variants of TransMorph: the
diffeomorphic variants ensure the topology-preserving deformations, and the Bayesian variant produces a well-
calibrated registration uncertainty estimate. We extensively validated the proposed models using 3D medical
images from three applications: inter-patient and atlas-to-patient brain MRI registration and phantom-to-CT
registration. The proposed models are evaluated in comparison to a variety of existing registration methods
and Transformer architectures. Qualitative and quantitative results demonstrate that the proposed Transformer-
based model leads to a substantial performance improvement over the baseline methods, confirming the
effectiveness of Transformers for medical image registration.
1. Introduction

Deformable image registration (DIR) is fundamental for many med-
ical imaging analysis tasks. It functions by establishing spatial corre-
spondence in order to minimize the differences between a pair of fixed
and moving images. Traditional methods formulate image registration
as a variational problem for estimating a smooth mapping between the
points in one image and those in another (Avants et al., 2008; Beg
et al., 2005; Vercauteren et al., 2009; Heinrich et al., 2013a; Modat
et al., 2010). However, such methods are computationally expensive
and usually slow in practice because the optimization problem needs
to be solved de novo for each pair of unseen images.

Recently, deep neural networks (DNNs), especially convolutional
neural networks (ConvNets), have demonstrated state-of-the-art perfor-
mance in many computer vision tasks, including object detection (Red-
mon et al., 2016), image classification (He et al., 2016), and segmenta-
tion (Long et al., 2015). Ever since the success of U-Net in the ISBI cell
tracking challenge of 2015 (Ronneberger et al., 2015), ConvNet-based
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methods have become a major focus of attention in medical image anal-
ysis fields, such as tumor segmentation (Isensee et al., 2021; Zhou et al.,
2019), image reconstruction (Zhu et al., 2018), and disease diagnos-
tics (Lian et al., 2018). In medical image registration, ConvNet-based
methods can produce significantly improved registration performance
while operating orders of magnitudes faster (after training) compared
to traditional methods. ConvNet-based methods replace the costly per-
image optimization seen in traditional methods with a single global
function optimization during a training phase. The ConvNets learn the
common representation of image registration from training images,
enabling rapid alignment of an unseen image pair after training. Ini-
tially, the supervision of ground-truth deformation fields (which are
usually generated using traditional registration methods) is needed
for training the neural networks (Onofrey et al., 2013; Yang et al.,
2017b; Rohé et al., 2017). Recently, the focus has been shifted towards
developing unsupervised methods that do not depend on ground-truth
deformation fields (Balakrishnan et al., 2019; Dalca et al., 2019; Kim
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et al., 2021; de Vos et al., 2019, 2017; Lei et al., 2020; Chen et al., 2020;
Zhang, 2018). Nearly all of the existing deep-learning-based methods
mentioned above used U-Net (Ronneberger et al., 2015) or the simply
modified versions of U-Net (e.g., tweaking the number of layers or
changing down- and up-sampling schemes) as their ConvNet designs.

ConvNet architectures generally have limitations in modeling ex-
plicit long-range spatial relations (i.e., relations between two voxels
that are far away from each other) present in an image due to the
intrinsic locality (i.e., the limited receptive field) of convolution oper-
ations (Luo et al., 2016). The U-Net (or V-Net (Milletari et al., 2016))
was proposed to overcome this limitation by introducing down- and up-
sampling operations into a ConvNet, which theoretically enlarges the
receptive field of the ConvNet and, thus, encourages the network to
consider long-range relationships between points in images. However,
several problems remain: first, the receptive fields of the first several
layers are still restricted by the convolution-kernel size, and the global
information of an image can only be viewed at the deeper layers
of the network; second, it has been shown that as the convolutional
layers deepen, the impact from far-away voxels decays quickly (Li
et al., 2021). Therefore, the effective receptive field of a U-Net is,
in practice, much smaller than its theoretical receptive field, and it
is only a portion of the typical size of a medical image. This limits
the U-Net’s ability to perceive semantic information and model long-
range relationships between points. Yet, it is believed that the ability
to comprehend semantic scene information is of great importance in
coping large deformations (Ha et al., 2020). Many works in other
fields (e.g., image segmentation) have addressed this limitation of U-
Net (Zhou et al., 2019; Jha et al., 2019; Devalla et al., 2018; Alom
et al., 2018). To allow for a better flow of multi-scale contextual
information throughout the network, Zhou et al. (2019) proposed a
nested U-Net (i.e., U-Net++), in which the complex up- and down-
samplings along with multiple skip connections were used. Devalla
et al. (2018) introduced dilated convolution to the U-Net architecture
that enlarges the network’s effective receptive field. A similar idea was
proposed by Alom et al. (2018), where the network’s effective receptive
field was increased by deploying recurrent convolutional operations.
Jha et al. proposed ResUNet++ (Jha et al., 2019) that incorporates
the attention mechanisms into U-Net for modeling long-range spatial
information. Despite these methods’ promising performance in other
medical imaging fields, there has been limiting work on using advanced
network architectures for medical image registration.

Transformer, which originated from natural language processing
tasks (Vaswani et al., 2017), has shown its potential in computer vision
tasks. A Transformer deploys self-attention mechanisms to determine
which parts of the input sequence (e.g., an image) are essential based on
contextual information. Unlike convolution operations, whose effective
receptive fields are limited by the size of convolution kernels, the
self-attention mechanisms in a Transformer have large size effective
receptive fields, making a Transformer capable of capturing long-range
spatial information (Li et al., 2021). Dosovitskiy et al. (2020) proposed
Vision Transformer (ViT) that applies the Transformer encoder from
NLP directly to images. It was the first purely self-attention-based net-
work for computer vision and achieved state-of-the-art performance in
image recognition. Subsequent to their success, Swin Transformer (Liu
et al., 2021a) and its variants (Dai et al., 2021; Dong et al., 2021)
have demonstrated their superior performances in object detection, and
semantic segmentation. Recently, Transformer-related methods have
gained increased attention in medical imaging (Chen et al., 2021b; Xie
et al., 2021; Wang et al., 2021a; Li et al., 2021; Wang et al., 2021b;
Zhang et al., 2021); the major application has been the task of image
segmentation.

Transformer can be a strong candidate for image registration be-
cause it can better comprehend the spatial correspondence between
the moving and fixed images. Registration is the process of establishing
such correspondence, and intuitively, by comparing different parts of
2

the moving to the fixed image. A ConvNet has a narrow field of view: it
performs convolution locally, and its field of view grows in proportion
to the ConvNet’s depth; hence, the shallow layers have a relatively
small receptive field, limiting the ConvNet’s ability to associate the
distant parts between two images. For example, if the left part of the
moving image matches the right part of the fixed image, ConvNet
will be unable to establish the proper spatial correspondence between
the two parts if it cannot see both parts concurrently (i.e., when one
of the parts falls outside of the ConvNet’s field of view). However,
Transformer is capable of handling such circumstances and rapidly
focusing on the parts that need deformation, owing to its large receptive
field and self-attention mechanism.

Our group has previously shown preliminary results that demon-
strated the bridging of ViT and V-Net provided good performance in
image registration (Chen et al., 2021a). In this work, we extended
that preliminary work and investigated various Transformer models
from other tasks (i.e., computer vision and medical imaging tasks).
We present a hybrid Transformer-ConvNet framework, TransMorph,
for volumetric medical image registration. In this method, the Swin
Transformer (Liu et al., 2021a) was employed as the encoder to cap-
ture the spatial correspondence between the input moving and fixed
images. Then, a ConvNet decoder processed the information provided
by the Transformer encoder into a dense displacement field. Long skip
connections were deployed to maintain the flow of localization infor-
mation between the encoder and decoder stages. We also introduced
diffeomorphic variations of TransMorph to ensure a smooth and
topology-preserving deformation. Additionally, we applied variational
inference on the parameters of TransMorph, resulting in a Bayesian
model that predicts registration uncertainty based on the given image
pair. Qualitative and quantitative evaluation of the experimental results
demonstrate the robustness of the proposed method and confirm the
efficacy of Transformers for image registration.

The main contributions of this work are summarized as follows:

• Transformer-based model: This paper presents the pioneering work
on using Transformers for image registration. A novel
Transformer-based neural network, TransMorph, was proposed
for affine and deformable image registration.

• Architecture analysis: Experiments in this paper demonstrate that
positional embedding, which is a commonly used element in
Transformer by convention, is not required for the proposed hy-
brid Transformer-ConvNet model. Secondly, we show that
Transformer-based models have larger effective receptive fields
than ConvNets. Moreover, we demonstrated that TransMorph
promotes a flatter registration loss landscape.

• Diffeomorphic registration: We demonstrate that TransMorph can
be easily integrated into two existing frameworks as a registration
backbone to provide diffeomorphic registration.

• Uncertainty quantification: This paper also provides a Bayesian un-
certainty variant of TransMorph that yields transformer uncer-
tainty and perfectly calibrated appearance uncertainty estimates.

• State-of-the-art results: We extensively validate the proposed regis-
tration models on two brain MRI registration applications (inter-
patient and atlas-to-patient registration) and on a novel applica-
tion of XCAT-to-CT registration with an aim to create a population
of anatomically variable XCAT phantom. The datasets used in this
study (which include a publicly available dataset, the IXI dataset1)
contain over 1000 image pairs for training and testing. The pro-
posed models were compared with various registration methods
and demonstrated state-of-the-art performance. Eight registration
approaches were employed as baselines, including learning-based
methods and widely used conventional methods. The perfor-
mances of four recently proposed Transformer architectures from
other tasks (e.g., semantic segmentation, classification, etc.) were
also evaluated on the task of image registration.

1 https://brain-development.org/ixi-dataset/

https://brain-development.org/ixi-dataset/
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• Open source: We provide the community with a fast and accurate
tool for deformable registration. The source code, the pre-trained
models, and our preprocessed IXI dataset are publicly available at
https://bit.ly/37eJS6N.

The paper is organized as follows. Section 2 discusses related work.
ection 3 explains the proposed methodology. Section 4 discusses
xperimental setup, implementation details, and datasets used in this
tudy. Section 5 presents experimental results. Section 6 discusses the
indings based on the results, and Section 7 concludes the paper.

. Related work

This section reviews the relevant literature and provides fundamen-
al knowledge for the proposed method.

.1. Image registration

Deformable image registration (DIR) establishes spatial correspon-
ence between two images by optimizing an energy function:

(𝐼𝑚, 𝐼𝑓 , 𝜙) = 𝐸𝑠𝑖𝑚(𝐼𝑚◦𝜙, 𝐼𝑓 ) + 𝜆𝑅(𝜙), (1)

where 𝐼𝑚 and 𝐼𝑓 denote, respectively, the moving and fixed image, 𝜙
denotes the deformation field that warps the moving image (i.e., 𝐼𝑚◦𝜙),
𝑅(𝜙) imposes smoothness of the deformation field, and 𝜆 is the regular-
ization hyper-parameter that determines the trade-off between image
similarity and deformation field regularity. The optimal warping, 𝜙̂ is
given by minimizing this energy function:

𝜙̂ = arg min
𝜙

𝐸(𝐼𝑚, 𝐼𝑓 , 𝜙). (2)

In the energy function, 𝐸𝑠𝑖𝑚 measures the level of alignment be-
tween the deformed moving image, 𝐼𝑚◦𝜙, and the fixed image, 𝐼𝑓 .
Some common choices for 𝐸𝑠𝑖𝑚 are mean squared error (MSE) (Beg
t al., 2005; Wolberg and Zokai, 2000), normalized cross-correlation
NCC) (Avants et al., 2008), structural similarity index (SSIM) (Chen
t al., 2020), and mutual information (MI) (Viola and Wells III, 1997).
he regularization term, 𝑅(𝜙), imposes spatial smoothness on the de-

formation field. A common assumption in most applications is that
similar structures exist in both moving and fixed images. As a result, a
continuous and invertible deformation field (i.e., a diffeomorphism) is
needed to preserve topology, and the regularization, 𝑅(𝜙) is meant to
enforce or encourage this. Isotropic diffusion (equivalent to Gaussian
smoothing) (Balakrishnan et al., 2019), anisotropic diffusion (Pace
et al., 2013), total variation (Vishnevskiy et al., 2016), and bending
energy (Johnson and Christensen, 2002) are popular options for 𝑅(𝜙).

2.1.1. Image registration via deep neural networks
While traditional image registration methods iteratively minimize

the energy function in (1) for each pair of moving and fixed images,
DNN-based methods optimize the energy function for a training dataset,
thereby learning a global representation of image registration that
enables alignment of an unseen pair of volumes. DNN methods are often
categorized as supervised or unsupervised, with the former requiring a
ground truth deformation field for training and the latter relying only
on the image datasets.

In supervised DNN methods, the ground-truth deformation fields
are either produced synthetically or generated by traditional registra-
tion methods (Yang et al., 2017b; Sokooti et al., 2017; Cao et al.,
2018). Yang et al. (2017b) proposed a supervised ConvNet that predicts
the LDDMM (Beg et al., 2005) momentum from image patches. Sokooti
et al. (2017) trained a registration ConvNet with synthetic displacement
fields. The ground-truth deformation fields are often computationally
expensive to generate, and the registration accuracy of these methods
is highly dependent on the quality of the ground truth.

Due to the limitations of supervised methods, the focus of re-
3

search has switched to unsupervised DNN methods that do not need (
ground-truth deformation fields. Unsupervised DNNs optimize an en-
ergy function on the input images, similar to traditional methods.
However, DNN-based methods learn a common registration represen-
tation from a training set and then apply it to unseen images. Note
that the term ‘‘unsupervised’’ refers to the absence of ground-truth
deformation fields, but the network still needs training (this is also
known as ‘‘self-supervised’’). de Vos et al. (2019), Balakrishnan et al.
(2018, 2019) are representative of unsupervised DNN-based methods.

More recently, diffeomorphic deformation representations have
been developed to address the issue of non-smooth deformations in
DNN-based methods. We briefly introduce its concepts in the next
subsection.

2.1.2. Diffeomorphic image registration
Diffeomorphic deformable image registration is important in many

medical image applications, owing to its special properties including
topology preservation and transformation invertibility. A diffeomor-
phic transformation is a smooth and continuous one-to-one mapping
with invertible derivatives (i.e., non-zero Jacobian determinant). Such
a transformation can be achieved via the time-integration of time-
dependent (Beg et al., 2005; Avants et al., 2008) or time-stationary
velocity fields (SVFs) (Arsigny et al., 2006; Ashburner, 2007; Ver-
cauteren et al., 2009; Hernandez et al., 2009). In the time-dependent
setting (e.g., LDDMM Beg et al., 2005) and SyN (Avants et al., 2008),
a diffeomorphic transformation 𝜙 is obtained via integrating the suffi-
ciently smooth time-varying velocity fields 𝜈(𝑡), i.e., 𝑑

𝑑𝑡𝜙
(𝑡) = 𝜈(𝑡)(𝜙(𝑡)),

here 𝜙(𝑡) = 𝑖𝑑 is the identity transform. On the other hand, in the sta-
ionary velocity fields (SVFs) setting (e.g., DARTEL (Ashburner, 2007)
nd diffeomorphic Demons (Vercauteren et al., 2009)), the velocity
ields are assumed to be stationary over time, i.e., 𝑑

𝑑𝑡𝜙
(𝑡) = 𝜈(𝜙(𝑡)). Dalca

t al. (2019) first adopt the diffeomorphism formulation in a deep learn-
ng model, using the SVFs setting with an efficient scaling-and-squaring
pproach (Arsigny et al., 2006). In the scaling-and-squaring approach,
he deformation field is represented as a Lie algebra member that is
xponentiated to generate a time 1 deformation 𝜙(1), which is a member
f the Lie group: 𝜙(1) = exp(𝜈). This means that the exponentiated flow
ield compels the mapping to be diffeomorphic and invertible using the
ame flow field. Starting from an initial deformation field:

(1∕2𝑇 ) = 𝑝 +
𝜈(𝑝)
2𝑇

, (3)

where 𝑝 denotes the spatial locations. The 𝜙(1) can be obtained using
the recurrence:

𝜙(1∕2𝑡−1) = 𝜙(1∕2𝑡)◦𝜙(1∕2𝑡). (4)

Thus, 𝜙(1) = 𝜙(1∕2)◦𝜙(1∕2).
In practice, a neural network first generates a displacement field,

which is then scaled by 1∕2𝑇 to produce an initial deformation field
𝜙(1∕2𝑇 ). Subsequently, the squaring technique (i.e., Eq. (4)) is applied
recursively to 𝜙(1∕2𝑇 ) 𝑇 times via a spatial transformation function,
resulting in a final diffeomorphic deformation field 𝜙(1). Despite the
fact that diffeomorphisms are theoretically guaranteed to be invertible,
interpolation errors can lead to invertibility errors that increase linearly
with the number of interpolation steps (Avants et al., 2008; Mok and
Chung, 2020).

2.2. Self-attention mechanism and transformer

Transformer makes use of a self-attention mechanism that estimates
the relevance of one input sequence to another via the Query-Key-
Value (QKV) model (Vaswani et al., 2017; Dosovitskiy et al., 2020).
The input sequences often originate from the flattened patches of an
image. Let 𝐱 be an image volume defined over a 3D spatial domain
(i.e., 𝐱 ∈ R𝐻×𝑊 ×𝐿). The image is first divided into 𝑁 flattened 3D
patches 𝐱𝑝 ∈ R𝑁×𝑃 3 , where (𝐻,𝑊 ,𝐿) is the size of the original image,

𝐻𝑊𝐿 . Then, a
𝑃 , 𝑃 , 𝑃 ) is the size of each image patch, and 𝑁 =
𝑃 3

https://bit.ly/37eJS6N
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Fig. 1. The architecture of the proposed TransMorph registration network.
Fig. 2. The conventional paradigm of image registration.

learnable linear embedding 𝐄 is applied to 𝐱𝑝, which projects each
patch into a 𝐷 × 1 vector representation:

𝐱̂𝑒 = [𝐱1𝑝𝐄; 𝐱
2
𝑝𝐄; ...; 𝐱

𝑁
𝑝 𝐄], 𝐄 ∈ R𝑃 3×𝐷 (5)

where the dimension 𝐷 is a user-defined hyperparameter. Then, a
learnable positional embedding is added to 𝐱̂𝑒 so that the patches
can retain their positional information, i.e., 𝐱𝑒 = 𝐱̂𝑒 + 𝐄𝑝𝑜𝑠, where
𝐄𝑝𝑜𝑠 ∈ R𝑁×𝐷. These vector representations, often known as tokens, are
subsequently used as inputs for self-attention computations.

Self-attention. To compute self-attention (SA), 𝐱𝑒 ∈ R𝑁×𝐷 is encoded
by 𝐔 (i.e., a linear layer) to three matrix representations: Queries
𝐐 ∈ R𝑁×𝐷𝑘 , Keys 𝐊 ∈ R𝑁×𝐷𝑘 , and Values 𝐕 ∈ R𝑁×𝐷𝑣 . The scaled
dot-product attention is given by:

[𝐐,𝐊,𝐕] = 𝐱𝑒𝐔𝑞,𝑘,𝑣 𝐔𝑞,𝑘,𝑣 ∈ R𝐷×𝐷𝑞,𝑘,𝑣 ,

𝐀 = softmax(𝐐𝐊⊤
√

𝐷𝑘
) 𝐀 ∈ R𝑁×𝑁 ,

𝑆𝐴(𝐱𝑒) = 𝐀𝐕,

(6)

where 𝐀 is the attention weight matrix, each element of 𝐀 represents
the pairwise similarity between two elements of the input sequence 𝐱𝑒
and their respective query and key representations. In general, SA com-
putes a normalized score for each input token based on the dot product
of the Query and Key representations. The score is subsequently applied
to the Value representation of the token, signifying to the network
whether or not to focus on this token.

Multi-head self-attention. A Transformer employs multi-head self-
attention (MSA) rather than a single attention function. MSA is an
extension of self-attention in which ℎ self-attention operations (i.e.,
‘‘heads’’) are processed in parallel, thereby effectively increasing the
number of trainable parameters. Then, the outputs of the SA operations
are concatenated then projected onto a 𝐷-dimensional representation:

(7)
4

𝑀𝑆𝐴(𝐱𝑒) =[𝑆𝐴1(𝐱𝑒);𝑆𝐴2(𝐱𝑒); ...;𝑆𝐴ℎ(𝐱𝑒)]𝐔𝑀𝑆𝐴,
where 𝐔𝑀𝑆𝐴 ∈ Rℎ⋅𝐷ℎ×𝐷, and 𝐷ℎ is typically set to 𝐷∕ℎ in order to keep
the number of parameters constant before and after the MSA operation.

2.3. Bayesian deep learning

Uncertainty estimates help comprehend what a machine learning
model does not know. They indicate the likelihood that a neural
network may make an incorrect prediction. Because most deep neural
networks are incapable of providing an estimate of the uncertainty in
their output values, their predictions are frequently taken at face value
and thought to be correct. Bayesian deep learning estimates predictive
uncertainty, providing a realistic paradigm for understanding uncer-
tainty within deep neural networks (Gal and Ghahramani, 2016). The
uncertainty caused by the parameters in a neural network is known as
epistemic uncertainty, which is modeled by placing a prior distribution
(e.g., a Gaussian prior distribution: 𝐖 ∼  (0, 𝐼)) on the parameters of a
network and then attempting to capture how much these weights vary
given specific data. Recent efforts in this area include the Bayes by Back-
prop (Blundell et al., 2015), its closely related mean-field variational
inference by assuming a Gaussian prior distribution (Tölle et al., 2021),
stochastic batch normalization (Atanov et al., 2018), and Monte-Carlo
(MC) dropout (Gal and Ghahramani, 2016; Kendall and Gal, 2017). The
applications of Bayesian deep learning in medical imaging expands on
image denoising (Tölle et al., 2021; Laves et al., 2020b) and image
segmentation (DeVries and Taylor, 2018; Baumgartner et al., 2019;
Mehrtash et al., 2020). In deep-learning-based image registration, the
majority of methods provide a single, deterministic solution of the
unknown geometric transformation. Knowing about epistemic uncer-
tainty helps determine if and to what degree the registration results
can be trusted and whether the input data is appropriate for the neural
network.

In general, two categories of registration uncertainty may be mod-
eled using the epistemic uncertainty of a deep learning model: trans-
formation uncertainty and appearance uncertainty (Luo et al., 2019; Xu
et al., 2022). Transformation uncertainty measures the local ambiguity
of the spatial transformation (i.e., the deformation), whereas appear-
ance uncertainty quantifies the uncertainty in the intensity values of
registered voxels or the volumes of the registered organs. Transfor-
mation uncertainty estimates may be used for uncertainty-weighted
registration (Simpson et al., 2011; Kybic, 2009), surgical treatment
planning, or directly visualized for qualitative evaluations (Yang et al.,
2017b). Appearance uncertainty may be translated into dose uncer-
tainties in cumulative dose for radiation or radiopharmaceutical ther-
apy (Risholm et al., 2011; Vickress et al., 2017; Chetty and Rosu-
Bubulac, 2019; Gear et al., 2018). These registration uncertainty es-
timates also enable the assessment of operative risks and leads to
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Fig. 3. The overall framework of the proposed Transformer-based image registration model, TransMorph. The proposed hybrid Transformer-ConvNet network takes two inputs:
a fixed image and a moving image that is affinely aligned with the fixed image. The network generates a nonlinear warping function, which is then applied to the moving image
through a spatial transformation function. If an image pair has not been affinely aligned, an affine Transformer may be used prior to the deformable registration (left dashed box).
Additionally, auxiliary anatomical segmentations may be leveraged during training the proposed network (right dashed box).
better-informed clinical decisions (Luo et al., 2019). Cui et al. (2021)
and Yang et al. (2017b) incorporated MC dropout layers in their regis-
tration network designs, allowing for the estimation of transformation
uncertainty by sampling multiple deformation field predictions from
the network.

The proposed image registration framework expands on these ideas.
In particular, a new registration framework is presented that leverages
a Transformer in the network design. We demonstrate that this frame-
work can be readily adapted to several existing techniques to allow
diffeomorphism for image registration, and incorporate Bayesian deep
learning to estimate registration uncertainty.

3. Methods

The conventional paradigm of image registration is shown in Fig. 2.
The moving and fixed images, denoted respectively as 𝐼𝑚 and 𝐼𝑓 ,
are first affinely transformed into a single coordinate system. The
resulting affine-aligned moving image is denoted as 𝐼𝑚. Subsequently,
𝐼𝑚 is warped to 𝐼𝑓 using a deformation field, 𝜙, generated by a DIR
algorithm (i.e., 𝐼𝑚◦𝜙). Fig. 3 presents an overview of the proposed
method. Here, both the affine transformation and the deformable reg-
istration are performed using Transformer-based neural networks. The
affine Transformer takes 𝐼𝑚 and 𝐼𝑓 as inputs and computes a set of
affine transformation parameters (e.g., rotation angle, translation, etc.).
These parameters are used to affinely align 𝐼𝑚 with 𝐼𝑓 via an affine
transformation function, yielding an aligned image 𝐼𝑚. Then, a DIR
network computes a deformation field 𝜙 given 𝐼𝑚 and 𝐼𝑓 , which warps
𝐼𝑚 using a spatial transformation function (i.e., 𝐼𝑓 = 𝐼𝑚◦𝜙). During
training, the DIR network may optionally include supplementary in-
formation (e.g., anatomical segmentation). The network architectures,
the loss and regularization functions, and the variants of the method
are described in detail in the following sections.

3.1. Affine transformation network

Affine transformation is often used as the initial stage in image
registration because it facilitates the optimization of the following more
5

Fig. 4. The framework of the proposed Transformer-based affine model.

complicated DIR processes (de Vos et al., 2019). An affine network
examines a pair of moving and fixed images globally and produces a
set of transformation parameters that aligns the moving image with
the fixed image. Here (see Fig. 4), the architecture of the proposed
Transformer-based affine network is a modified Swin Transformer (Liu
et al., 2021a) that takes two 3D volumes as the inputs (i.e., 𝐼𝑓 and
𝐼𝑚) and generates 12 affine parameters: three rotation angles, three
translation parameters, three scaling parameters, and three shearing
parameters. The details and a visualization of the architecture are
shown in Fig. A.19 in Appendix A. We reduced the number of param-
eters in the original Swin Transformer due to the relative simplicity of
affine registration. The specifics of the Transformer’s architecture and
parameter settings are covered in a subsequent section.

3.2. Deformable registration network

Fig. 1 shows the network architecture of the proposed Trans-
Morph. The encoder of the network first splits the input moving and
fixed volumes into non-overlapping 3D patches, each of size 2×𝑃×𝑃×𝑃 ,
where 𝑃 is typically set to 4 (Dosovitskiy et al., 2020; Liu et al., 2021a;
Dong et al., 2021). We denote the 𝑖th patch as 𝑥𝑖𝑝, where 𝑖 ∈ {1,… , 𝑁}
and 𝑁 = 𝐻 × 𝑊 × 𝐿 is the total number of patches. Each patch is
𝑃 𝑃 𝑃
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Fig. 5. (a): Swin Transformer creates hierarchical feature maps by merging image patches. The self-attention is computed within each local 3D window (the red box). The
feature maps generated at each resolution are sent into a ConvNet decoder to produce an output. (b): The 3D cyclic shift of local windows for shifted-window-based self-attention
computation.
flattened and regarded as a ‘‘token’’, and then a linear projection layer
is used to project each token to a feature representation of an arbitrary
dimension (denoted as 𝐶):

𝐳0 = [𝑥1𝑝𝐄; 𝑥
2
𝑝𝐄; ...; 𝑥

𝑁
𝑝 𝐄], (8)

where 𝐄 ∈ R2𝑃 3×𝐶 denotes the linear projection, and the output 𝐳0 has
a dimension of 𝑁 × 𝐶.

Because the linear projection operates on image patches and does
not keep the token’s location relative to the image as a whole, previ-
ous Transformer-based models often added a positional embedding to
the linear projections in order to integrate the positional information
into tokens, i.e. 𝐳0 + 𝐄𝑝𝑜𝑠 (Vaswani et al., 2017; Dosovitskiy et al.,
2020; Liu et al., 2021a; Dong et al., 2021). Such Transformers were
primarily designed for image classification, where the output is often
a vector describing the likelihood of an input image being classified as
a certain class. Thus, if the positional embedding is not employed, the
Transformer may lose the positional information. However, for pixel-
level tasks such as image registration, the network often includes a
decoder that generates a dense prediction with the same resolution as
the input or target image. The spatial correspondence between voxels in
the output image is enforced by comparing the output with the target
image using a loss function. Any spatial mismatches between output
and target would contribute to the loss and be backpropagated into
the Transformer encoder. The Transformer should thereby inherently
capture the tokens’ positional information. In this work, we observed,
as will be shown in Section 6.1.2, that positional embedding is not
necessary for image registration, and it only adds extra parameters to
the network without improving performance.

Following the linear projection layer, several consecutive stages of
patch merging and Swin Transformer blocks (Liu et al., 2021a) are
applied on the tokens 𝐳0. The Swin Transformer blocks outputs the
same number of tokens as the input, while the patch merging layers
concatenate the features of each group of 2 × 2 × 2 neighboring tokens,
thus they reduce the number of tokens by a factor of 2 × 2 × 2 = 8
(e.g., 𝐻 ×𝑊 × 𝐿 × 𝐶 ←←→ 𝐻

2 × 𝑊
2 × 𝐿

2 × 8𝐶). Then, a linear layer is ap-
plied on the 8𝐶-dimensional concatenated features to produce features
each of 2𝐶-dimension. After four stages of Swin Transformer blocks
and three stages of patch merging in between the Transformer stages
(i.e., orange boxes in Fig. 1), the output dimension at the last stage
of the encoder is 𝐻

32 × 𝑊
32 × 𝐿

32 × 8𝐶. The decoder consists of successive
upsampling and convolutional layers with the kernel size of 3 × 3. Each
of the upsampled feature maps in the decoding stage was concatenated
with the corresponding feature map from the encoding path via skip
connections, then followed by two consecutive convolutional layers.
As shown in Fig. 1, the Transformer encoder can only provide feature
maps up to a resolution of 𝐻

𝑃 × 𝑊
𝑃 × 𝐿

𝑃 owing to the nature of patch
operation (denoted by the orange arrows). Hence, Transformer may
fall short of delivering high-resolution feature maps and aggregating
local information at lower layers (Raghu et al., 2021). To address this
6

shortcoming, we employed two convolutional layers using the original
and downsampled image pair as inputs to capture local information
and generate high-resolution feature maps. The outputs of these layers
were concatenated with the feature maps in the decoder to produce
a deformation field. The output deformation field, 𝜙, was generated
the application of sixteen 3 × 3 convolutions. Except for the last
convolutional layer, each convolutional layer is followed by a Leaky
Rectified Linear Unit (Maas et al., 2013) activation. Finally, the spatial
transformation function (Jaderberg et al., 2015) is used to apply a
nonlinear warp to the moving image 𝐼𝑚 with the deformation field 𝜙
(or the displacement field 𝐮) provided by the network.

In the next subsections, we discuss the Swin Transformer block, the
spatial transformation function, and the loss functions in detail.

3.2.1. 3D Swin Transformer block
Swin Transformer (Liu et al., 2021a) can generate hierarchical fea-

ture maps at various resolutions by using patch merging layers, making
it ideal for usage as a general-purpose backbone for pixel-level tasks
like image registration and segmentation. Swin Transformer’s most
significant component, apart from patch merging layers, is the shifted
window-based self-attention mechanism. Unlike ViT (Dosovitskiy et al.,
2020), which computes the relationships between a token and all other
tokens at each step of the self-attention modules. Swin Transformer
computes self-attention within the evenly partitioned non-overlapping
local windows of the original and the lower resolution feature maps
(as shown in Fig. 5(a)). In contrast to the original Swin Transformer,
this work uses rectangular-parallelepiped windows to accommodate
non-square images, and each has a shape of 𝑀𝑥 ×𝑀𝑦 ×𝑀𝑧. At each
resolution, the first Swin Transformer block employs a regular window
partitioning method, beginning with the top-left voxel, and the feature
maps are evenly partitioned into non-overlapping windows of size
𝑀𝑥 × 𝑀𝑦 × 𝑀𝑧. The self-attention is then calculated locally within
each window. To introduce connections between neighboring windows,
the Swin Transformer uses a shifted window design: in the successive
Swin Transformer blocks, the windowing configuration shifts from that
of the preceding block, by displacing the windows in the preceding
block by (⌊𝑀𝑥

2 ⌋ × ⌊

𝑀𝑦
2 ⌋ × ⌊

𝑀𝑧
2 ⌋) voxels. As illustrated by an example

in Fig. 5 (b), the input feature map has 4 × 8 × 12 voxels. With a
window size of 2 × 4 × 6, the feature map is evenly partitioned into
2 × 2 × 2 = 8 windows in the first Swin Transformer block (‘‘Swin
Block 1’’ in Fig. 5 (b)). Then, in the next block, the windows are
shifted by (⌊ 2

2 ⌋ × ⌊

4
2 ⌋ × ⌊

6
2 ⌋) = (1 × 2 × 3), and the number of windows

becomes 3 × 3 × 3 = 27. We extended the original 2D efficient batch
computation (i.e., cyclic shift) (Liu et al., 2021a,b) to 3D and applied
it to the 27 shifted windows, keeping the final number of windows for
attention computation at 8. With the windowing-based attention, two
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consecutive Swin Transformer blocks can be computed as:

𝐳̂𝓁 = W-MSA(LN(𝐳𝓁−1)) + 𝐳𝓁−1,
𝐳𝓁 = MLP(LN(𝐳̂𝓁)) + 𝐳̂𝓁 ,

̂𝓁+1 = SW-MSA(LN(𝐳𝓁)) + 𝐳𝓁 ,
𝐳𝓁+1 = MLP(LN(𝐳̂𝓁+1)) + 𝐳̂𝓁+1,

(9)

where W-MSA and SW-MSA denote, respectively, window-based multi-
head self-attention and shifted-window-based multi-head self-attention
modules; MLP denotes the multi-layer perceptron module (Vaswani
et al., 2017); 𝐳̂𝓁 and 𝐳𝓁 denote the output features of the (S)W-MSA
and the MLP module for block 𝓁, respectively. The self-attention is
computed as:

𝐀(𝑄,𝐾, 𝑉 ) = softmax(𝑄𝐾
⊤

√

𝑑
+ 𝐵)𝑉 , (10)

where 𝑄,𝐾, 𝑉 ∈ R𝑀𝑥𝑀𝑦𝑀𝑧×𝑑 are query, key, value matrices, 𝑑 denotes
he dimension of query and key features, 𝑀𝑥𝑀𝑦𝑀𝑧 is the number
f tokens in a 3D window, and 𝐵 represents the relative position of
okens in each window. Since the relative position between tokens
long each axis (i.e., 𝑥, 𝑦, 𝑧) can only take values from [−𝑀𝑥,𝑦,𝑧 +

1,𝑀𝑥,𝑦,𝑧 − 1], the values in 𝐵 are taken from a smaller bias matrix
𝐵̂ ∈ R(2𝑀𝑥−1)×(2𝑀𝑦−1)×(2𝑀𝑧−1). For the reasons given previously, we
will show in Section 6.1.2 that positional bias 𝐵 is not needed for
the proposed network and that it just adds extra parameters without
improving registration performance.

3.2.2. Loss functions
The overall loss function for network training derives from the en-

ergy function of traditional image registration algorithms (i.e., Eq. (1)).
The loss function consists of two parts: one computes the similarity
between the deformed moving and the fixed images, and another one
regularizes the deformation field so that it is smooth:

(𝐼𝑓 , 𝐼𝑚, 𝜙) = 𝑠𝑖𝑚(𝐼𝑓 , 𝐼𝑚, 𝜙) + 𝜆(𝜙), (11)

where 𝑠𝑖𝑚 denotes the image fidelity measure, and  denotes the
deformation field regularization.

Image similarity measure. In this work, we experimented with two
widely-used similarity metric for 𝑠𝑖𝑚. The first was the mean squared
error, which was the mean of the squared difference in voxel values
between 𝐼𝑓 and 𝐼𝑚:

𝑀𝑆𝐸(𝐼𝑓 , 𝐼𝑚, 𝜙) =
1
𝛺

∑

𝐩∈𝛺
|𝐼𝑓 (𝐩) − [𝐼𝑚◦𝜙](𝐩)|2, (12)

where 𝐩 denotes the voxel location, and 𝛺 represents the image do-
ain.

Another similarity metric used was the local normalized cross-
orrelation between 𝐼𝑓 and 𝐼𝑚:

𝑁𝐶𝐶(𝐼𝑓 , 𝐼𝑚, 𝜙) =

∑

𝐩∈𝛺

(

∑

𝐩𝑖 (𝑓 (𝐩𝑖) − 𝑓 (𝐩))([𝐼𝑚◦𝜙](𝐩𝑖) − [𝐼𝑚◦𝜙](𝐩))
)2

(

∑

𝐩𝑖 (𝑓 (𝐩𝑖) − 𝑓 (𝐩))
2
)(

∑

𝐩𝑖 ([𝐼𝑚◦𝜙](𝐩𝑖) − [𝐼𝑚◦𝜙](𝐩))2
) ,

(13)

here 𝐼𝑓 (𝐩) and 𝐼𝑚(𝐩) denotes the mean voxel value within the lo-
al window of size 𝑛3 centered at voxel 𝐩. We used 𝑛 = 9 in the
xperiments.

eformation field regularization. Optimizing the similarity metric alone
ould encourage 𝐼𝑚◦𝜙 to be visually as close as possible to 𝐼𝑓 . The re-

ulting deformation field 𝜙, however, might not be smooth or realistic.
o impose smoothness in the deformation field, a regularizer (𝜙) was
dded to the loss function. (𝜙) encourages the displacement value in
7

location to be similar to the values in its neighboring locations. Here,
e experimented with two regularizers. The first was the diffusion
egularizer (Balakrishnan et al., 2019):

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛(𝜙) =
∑

𝐩∈𝛺
‖∇𝐮(𝐩)‖2, (14)

here 𝐮(𝐩) is the spatial gradients of the displacement field 𝐮. The
patial gradients were approximated using forward differences, that is,
𝜕𝐮(𝐩)
𝜕{𝑥,𝑦,𝑧} ≈ 𝐮(𝑝{𝑥,𝑦,𝑧} + 1) − 𝐮(𝑝{𝑥,𝑦,𝑧}).

The second regularizer was bending energy (Rueckert et al., 1999),
hich penalizes sharply curved deformations, thus, it may be helpful

or abdominal organ registration. Bending energy operates on the
econd derivative of the displacement field 𝐮, and it is defined as:

𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝜙) =
∑

𝐩∈𝛺
‖∇2𝐮(𝐩)‖2 =

∑

𝐩∈𝛺

[

(

𝜕2𝐮(𝐩)
𝜕𝑥2

)2

+
(

𝜕2𝐮(𝐩)
𝜕𝑦2

)2

+

(

𝜕2𝐮(𝐩)
𝜕𝑧2

)2

+ 2
(

𝜕2𝐮(𝐩)
𝜕𝑥𝑧

)2

+ 2
(

𝜕2𝐮(𝐩)
𝜕𝑥𝑦

)2

+ 2
(

𝜕2𝐮(𝐩)
𝜕𝑦𝑧

)2 ]

,

(15)

where the derivatives were estimated using the same forward differ-
ences that were used previously.

Auxiliary segmentation information. When the organ segmentations of
𝐼𝑓 and 𝐼𝑚 are available, TransMorph may leverage this auxiliary in-
formation during training to improve the anatomical mapping between
𝐼𝑚◦𝜙 and 𝐼𝑓 . A loss function 𝑠𝑒𝑔 that quantifies the segmentation
overlap is added to the overall loss function (Eq. (11)):

(𝐼𝑓 , 𝐼𝑚, 𝜙) = 𝑠𝑖𝑚(𝐼𝑓 , 𝐼𝑚, 𝜙) + 𝜆(𝜙) + 𝛾𝑠𝑒𝑔(𝑠𝑓 , 𝑠𝑚, 𝜙), (16)

here 𝑠𝑓 and 𝑠𝑚 represent, respectively, the organ segmentation of
𝑓 and 𝐼𝑚, and 𝛾 is a weighting parameter that controls the strength
f 𝑠𝑒𝑔 . In the field of image registration, it is common to use Dice
core (Dice, 1945) as a figure of merit to quantify registration perfor-
ance. Therefore, we directly minimized the Dice loss (Milletari et al.,
016) between 𝑠𝑘𝑓 and 𝑠𝑘𝑚, where 𝑘 represents the 𝑘th structure/organ:

𝑖𝑐𝑒(𝑠𝑓 , 𝑠𝑚, 𝜙) = 1−

1
𝐾

∑

𝑘

2
∑

𝐩∈𝛺 𝑠
𝑘
𝑓 (𝐩)[𝑠

𝑘
𝑚◦𝜙](𝐩)

∑

𝐩∈𝛺

(

𝑠𝑘𝑓 (𝐩)
)2

+
∑

𝐩∈𝛺
(

[𝑠𝑘𝑚◦𝜙](𝐩)
)2
. (17)

To allow backpropagation of the Dice loss, we used a method similar
to that described in Balakrishnan et al. (2019), in which we designed
𝑠𝑓 and 𝑠𝑚 as image volumes with 𝐾 channels, each channel containing

binary mask defining the segmentation of a specific structure/organ.
hen, 𝑠𝑚◦𝜙 is computed by warping the 𝐾-channel 𝑠𝑚 with 𝜙 using

inear interpolation so that the gradients of 𝑠𝑒𝑔 can be backpropagated
nto the network.

.3. Probabilistic and B-spline variants

In this section, we demonstrate that by simply altering the de-
oder, TransMorph can be used in conjunction with the concepts
rom prior research to ensure a diffeomorphic deformation such that
he resulting deformable mapping is continuous, differentiable, and
opology-preserving. The diffeomorphic registration was achieved us-
ng the scaling-and-squaring approach (described in Section 2.1.2) with

stationary velocity field representation (Arsigny et al., 2006). Two
xisting diffeomorphic models, VoxelMorph-diff (Dalca et al.,
019) and MIDIR (Qiu et al., 2021), have been adopted as bases
or the proposed TransMorph diffeomorphic variants, designated

by TransMorph-diff (Appendix H) and TransMorph-bspl (Ap-
pendix I), respectively. The architectures of the two variants are shown
in Fig. 6. The detailed derivation of these two variants are listed in
Appendix A.



Medical Image Analysis 82 (2022) 102615J. Chen et al.
Fig. 6. The probabilistic and B-spline variants of TransMorph. (a): The architecture
of the probabilistic diffeomorphic TransMorph. (b): The architecture of the B-spline
diffeomorphic TransMorph.

TransMorph-diff was trained using the same loss functions as
VoxelMorph-diff (Dalca et al., 2019):

𝑝𝑟𝑜𝑏.(𝐼𝑓 , 𝐼𝑚, 𝜙𝐮;𝜓)

= −E𝐮∼𝑞𝜓
[

log 𝑝(𝐼𝑓 |𝐮, 𝐼𝑚)
]

+ KL
[

𝑞𝜓 (𝐮|𝐼𝑓 , 𝐼𝑚)||𝑝(𝐮)
]

= 1
2𝜎2

||𝐼𝑓 − 𝐼𝑚◦𝜙𝐮||
2 + 1

2

[

tr(𝜆𝐃Σ𝜓 − logΣ𝜓 ) + 𝝁⊤𝜓𝛬𝐮𝝁𝜓

]

,

(18)

and when anatomical label maps are available:

𝑝𝑟𝑜𝑏. 𝑤∕ 𝑎𝑢𝑥.(𝐼𝑓 , 𝑠𝑓 , 𝐼𝑚, 𝑠𝑚, 𝜙𝐮;𝜓)

= 1
2𝜎2

‖𝐼𝑓 − 𝐼𝑚◦𝜙𝐮‖
2 + 1

2𝜎2𝑠
‖𝑠𝑓 − 𝑠𝑚◦𝜙𝐮‖

2

+ 1
2

[

tr(𝜆𝐃Σ𝜓 − logΣ𝜓 ) + 𝝁⊤𝜓𝛬𝐮𝝁𝜓

]

.

(19)

However, it is important to note that in Dalca et al. (2019), 𝑠𝑓 and 𝑠𝑚
represent anatomical surfaces obtained from label maps. In contrast, we
directly used the label maps as 𝑠𝑓 and 𝑠𝑚 in this work. They were image
volumes with multiple channels, each channel contained a binary mask
defining the segmentation of a certain structure/organ.

3.4. Bayesian uncertainty variant

In this section, we extend the proposed TransMorph to a Bayesian
neural network (BNN) using the variational inference framework with
Monte Carlo dropout (Gal and Ghahramani, 2016), for which we refer
readers to (Gal and Ghahramani, 2016; Yang et al., 2017a, 2016) for
both theoretical and technical details. We denoted the resulting model
as TransMorph-Bayes. In this model, Dropout layers were inserted
into the Transformer encoder of the TransMorph architecture but not
into the ConvNet decoder, in order to avoid imposing excessive reg-
ularity for the network parameters and thus decreasing performance.
We added a dropout layer after each fully connected layer in the MLPs
(Eq. (9)) and after each self-attention computation (Eq. (10)). Note
that these are the locations where dropout layers are commonly used
for Transformer training. We set the dropout probability 𝑝 to 0.15 to
further avoid the network imposing an excessive degree of regularity
on the network weights.

Both the transformation and appearance uncertainty can be es-
timated as the variability from the predictive mean (i.e., the vari-
ance), where the predictive mean of the deformation fields and the
deformed images can be estimated by Monte Carlo integration (Gal and
Ghahramani, 2016):

𝜙̂ = 1
𝑇
∑

𝜙𝑡, (20)
8

𝑇 𝑡=1
and

𝐼𝑓 = 1
𝑇

𝑇
∑

𝑡=1
𝐼𝑚◦𝜙𝑡. (21)

This is equivalent to averaging the output of 𝑇 forward passes through
the network during inference, where 𝜙𝑡 represents the deformation
field produced by 𝑡th forward pass. The transformation and appearance
uncertainty can be estimated using the predictive variances of the
deformation fields and the deformed images, respectively, as:

𝛴̂2
𝜙 = 1

𝑇

𝑇
∑

𝑡=1

(

𝜙𝑡 − 𝜙̂𝑓
)2 , (22)

and

𝛴̂2
𝑓 = 1

𝑇

𝑇
∑

𝑡=1

(

𝐼𝑚◦𝜙𝑡 − 𝐼𝑓
)2 . (23)

3.4.1. Appearance uncertainty calibration
An ideal uncertainty estimate should be properly correlated to the

inaccuracy of the registration results; that is, a high uncertainty value
should indicate a large registration error, and vice versa. Otherwise,
doctors/surgeons may be misled by the erroneous estimate of registra-
tion uncertainty and place unwarranted confidence in the registration
results, resulting in severe consequences (Luo et al., 2019; Risholm
et al., 2013, 2011). The appearance uncertainty given by Eq. (23) is
expressed as the variability from the mean model prediction. Such an
appearance uncertainty estimation does not account for the systematic
errors (i.e., bias) between the mean registration prediction and the
target image; therefore, a low uncertainty value given by Eq. (23) does
not always guarantee an accurate registration result.

When the predicted uncertainty values closely corresponded to the
expected model error, the uncertainty estimates are considered to be
well-calibrated (Laves et al., 2019; Levi et al., 2019). In an ideal sce-
nario, the estimated registration uncertainty should completely reflect
the actual registration error. For instance, if the predictive variance
of a batch of registered images generated by the network is found to
be 0.5, the expectation of the squared error should likewise be 0.5.
Accordingly, if the expected model error is quantified by MSE, then
the perfect calibration of appearance uncertainty may be defined as the
following (Guo et al., 2017; Levi et al., 2019; Laves et al., 2020c):

E𝛴̂2
[

‖𝐼𝑚◦𝜙 − 𝐼𝑓‖2|𝛴̂2 = 𝛴2] = 𝛴2 ∀
{

𝛴2 ∈ R|𝛴2 ≥ 0
}

. (24)

In the conventional paradigm of Bayesian neural networks, the
uncertainty estimate is derived from the predictive variance 𝛴̂2 relative
to the predictive mean 𝐼𝑓 as in Eq. (23). However, it can be shown
that this predictive variance can be miscalibrated as a result of over-
fitting the training dataset (as shown in Appendix B). Therefore, the
uncertainty values estimated based on 𝛴̂2

𝑓 in Eq. (23) may be biased.
This bias must be corrected in applications such as image denoising or
classification (Laves et al., 2019; Guo et al., 2017; Kuleshov et al., 2018;
Phan et al., 2018; Laves et al., 2020c,a), such that the uncertainty val-
ues closely reflect the expected error. In image registration, however,
the expected appearance error may be computed even during the test
time since the target image is always known. Therefore, a perfectly cali-
brated appearance uncertainty quantification may be achieved without
additional effort. Here, we propose to replace the predicted mean 𝐼𝑓
with the target image 𝐼𝑓 in Eq. (23). Then, the appearance uncertainty
is the equivalent to the expected error:

𝛴2
𝑓 = 𝑒𝑟𝑟(𝐼𝑚◦𝜙) =

1
𝑇

𝑇
∑

𝑡=1

(

𝐼𝑚◦𝜙𝑡 − 𝐼𝑓
)2 . (25)

A comparison between the two appearance uncertainty estimate meth-
ods (i.e., 𝛴̂2 and 𝛴2 ) is shown later in this paper.
𝑓 𝑓
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4. Experiments

4.1. Datasets and preprocessing

Three datasets including over 1000 image pairs were used to thor-
oughly validate the proposed method. The details of each dataset are
described in the following sections.

4.1.1. Inter-patient brain MRI registration
For the inter-patient brain MR image registration dataset, we used

a dataset of 260 T1-weighted brain MRI images acquired at Johns
Hopkins University. The images were anonymized and acquired under
IRB approval. The dataset was split into 182, 26, and 52 (7:1:2)
volumes for training, validation, and test sets. Each image volume was
used as a moving image to form two image pairs by randomly matching
it to two other volumes in the set (i.e., the fixed images). Then, the
moving and fixed images were inverted to form another two image
pairs, resulting in four registration pairings of 𝐼𝑓 and 𝐼𝑚. The final
data comprises 768, 104, and 208 image pairs for training, validation,
and testing, respectively. Fischl (2012) was used to perform standard
pre-processing procedures for structural brain MRI, including skull
stripping, resampling, and affine transformation. The pre-processed
image volumes were all cropped to size of 160 × 192 × 224. Label maps
including 29 anatomical structures were obtained using FreeSurfer for
evaluating registration performances.

4.1.2. Atlas-to-patient brain MRI registration
We used a publicly available dataset to evaluate the proposed model

with atlas-to-patient brain MRI registration task. A total number of 576
T1-weighted brain MRI images from the Information eXtraction from
Images (IXI) database2 was used as the fixed images. The moving image
for this task was an atlas brain MRI obtained from Kim et al. (2021).
The dataset was split into 403, 58, and 115 (7:1:2) volumes for training,
validation, and test sets. FreeSurfer was used to pre-process the MRI
volumes. We carried out the same pre-processing procedures we used
for the previous dataset applied to the IXI dataset. All image volumes
were cropped to size of 160 × 192 × 224. Label maps of 29 anatomical
structures were used to evaluate registration performances.

4.1.3. Learn2Reg OASIS brain MRI registration
We additionally evaluated TransMorph on a public registration

dataset, OASIS (Marcus et al., 2007; Hoopes et al., 2021), obtained from
the 2021 Learn2Reg challenge (Hering et al., 2021) for inter-patient
registration. This dataset contains a total of 451 brain T2 MRI images,
with 394, 19, and 38 images being used for training, validation, and
testing, respectively. FreeSurfer (Fischl, 2012) was used to pre-process
the brain MRI images, and label maps for 35 anatomical structures were
provided for evaluation.

4.1.4. XCAT-to-CT registration
Computerized phantoms have been widely used in the medical

imaging field for algorithm optimization and imaging system valida-
tion (Christoffersen et al., 2013; Chen et al., 2019; Zhang et al., 2017).
The four-dimensional extended cardiac-torso (XCAT) phantom (Segars
et al., 2010) was developed based on anatomical images from the Visi-
ble Human Project data. While the current XCAT phantom3 can model
anatomical variations through organ and phantom scaling, it cannot
completely replicate the anatomical variations seen in humans. As a
result, XCAT-to-CT registration (which can be thought of as atlas-to-
image registration) has become a key method for creating anatomically
variable phantoms (Chen et al., 2020; Fu et al., 2021; Segars et al.,
2013). This research used a CT dataset from Segars et al. (2013) that

2 https://brain-development.org/ixi-dataset/
3 as of October, 2021.
9

includes 50 non-contrast chest-abdomen-pelvis (CAP) CT scans that are
part of the Duke University imaging database. Selected organs and
structures were manually segmented in each patient’s CT scan. The
structures segmented included the following: the body outline, the
bone structures, lungs, heart, liver, spleen, kidneys, stomach, pancreas,
large intestine, prostate, bladder, gall bladder, and thyroid. The manual
segmentation was done by several medical students, and the results
were subsequently corrected by an experienced radiologist at Duke
University. The CT volumes have voxel sizes ranging from 0.625 ×
.625 × 5 mm to 0.926 × 0.926 × 5 mm. We used trilinear interpolation to
esample all volumes to an identical voxel spacing of 2.5 × 2.5 × 5 mm.
he volumes were all cropped and zero-padded to have a size of
60 × 160 × 160 voxels. The intensity values were first clipped in the
ange of [−1000, 700] Hounsfield Units and then normalized to the range
f [0, 1]. The XCAT attenuation map was generated with a resolution

of 1.1 × 1.1 × 1.1 mm using the material compositions and attenuation
coefficients of the constituents at 120 keV. It was then resampled,
cropped, and padded so that the resulting volume matched the size
of the CT volumes. The XCAT attenuation map’s intensity values were
also normalized to be within a range of [0, 1]. The XCAT and CT images
were rigidly registered using the proposed affine network. The dataset
was split into 35, 5, and 10 (7:1:2) volumes for training, validation,
and testing. We conducted five-fold cross-validation on the fifty image
volumes, resulting in 50 testing volumes in total.

4.2. Baseline methods

We compared TransMorph to various registration methods that
have previously demonstrated state-of-the-art registration performance.
We begin by comparing TransMorph with four non-deep-learning-
based methods. The hyper-parameters of these methods, unless other-
wise specified, were empirically set to balance the trade-off between
registration accuracy and runtime. The methods and their hyperparam-
eter settings are described below:

• SyN4 (Avants et al., 2008): For both inter-patient and atlas-to-
patient brain MR registration tasks, we used the mean squared
difference (MSQ) as the objective function, along with a default
Gaussian smoothing of 3 and three scales with 180, 80, 40 iter-
ations, respectively. For XCAT-to-CT registration, we used cross-
correlation (CC) as the objective function, a Gaussian smoothing
of 5 and three scales with 160, 100, 40 iterations, respectively.

• NiftyReg5 (Modat et al., 2010): We used the sum of squared
differences (SSD) as the objective function and bending energy
as the regularizer for all registration tasks. For inter-patient brain
MR registration, we empirically used a regularization weighting
of 0.0002 and three scales with 300 iterations each. For atlas-to-
patient brain MR registration, the regularization weighting was
set to 0.0006, and we used three scales with 500 iterations each.
For XCAT-to-CT registration, we used a regularization weight of
0.0005 and five scales with 500 iterations each.

• deedsBCV6 (Heinrich et al., 2015): The objective function was
self-similarity context (SSC) (Heinrich et al., 2013b) by default.
For both inter-patient and atlas-to-patient brain MR registration,
we used the hyperparameter values suggested in Hoffmann et al.
(2020) for neuroimaging, in which the grid spacing, search radius,
and quantization step were set to 6 × 5 × 4 × 3 × 2, 6 × 5 × 4 × 3 × 2,
and 5 × 4 × 3 × 2 × 1, respectively. For XCAT-to-CT registration,
we used the default parameters suggested for abdominal CT reg-
istration (Heinrich et al., 2015), where the grid spacing, search
radius, and quantization step were 8×7×6×5×4, 8×7×6×5×4,
and 5 × 4 × 3 × 2 × 1, respectively.

4 https://github.com/ANTsX/ANTsPy
5 https://www.ucl.ac.uk/medical-image-computing
6
 https://github.com/mattiaspaul/deedsBCV

https://brain-development.org/ixi-dataset/
https://github.com/ANTsX/ANTsPy
https://www.ucl.ac.uk/medical-image-computing
https://github.com/mattiaspaul/deedsBCV
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• LDDMM7 Beg et al. (2005): MSE was used as the objective func-
tion by default. For both inter-patient and atlas-to-patient brain
MR registration, we used the smoothing kernel size of 5, the
smoothing kernel power of 2, the matching term coefficient of
4, the regularization term coefficient of 10, and the iteration
number of 500. For XCAT-to-CT registration, we used the same
kernel size, kernel power, the matching term coefficient, and the
number of iteration. However, the regularization term coefficient
was empirically set to 3.

Next, we compared the proposed method with several existing
deep-learning-based methods. For a fair comparison, unless otherwise
indicated, the loss function (Eq. (11)) that consists of MSE (Eq. (12))
and diffusion regularization (Eq. (14)) was used for inter-patient brain
MR registration, while we instead used LNCC (Eq. (13)) for atlas-to-
patient MRI registration. For XCAT-to-CT registration, we used the loss
function (Eq. (16)) that consists of LNCC (Eq. (13)), bending energy
(Eq. (15)), and Dice loss (Eq. (17)). Auxiliary data (organ segmentation)
was used for XCAT-to-CT registration only. Recall that the hyperpa-
rameters 𝜆 and 𝛾 define, respectively, the weight for deformation field
egularization and Dice loss. The detailed parameter settings used for
ach method were as follows:

• VoxelMorph8 (Balakrishnan et al., 2018, 2019): We employed
two variants of VoxelMorph, the second variant doubles the
number of convolution filters in the first variant; they are des-
ignated as VoxelMorph-1 and -2, respectively. For inter-patient
and atlas-to-patient brain MR registration, the regularization hy-
perparameter 𝜆 was set, respectively, to 0.02 and 1, where these
values were reported as the optimal values in Balakrishnan et al.
(2019). For XCAT-to-CT registration, we set 𝜆 = 𝛾 = 1.

• VoxelMorph-diff9 (Dalca et al., 2019): For both inter-patient
and atlas-to-patient brain MR registration tasks, the loss function
𝑝𝑟𝑜𝑏. (Eq. (18)) was used with 𝜎 set to 0.01 and 𝜆 set to 20.
For XCAT-to-CT registration, we used the loss function 𝑝𝑟𝑜𝑏.𝑤∕𝑎𝑢𝑥.
(Eq. (19)) with 𝜎 = 𝜎𝑠 = 0.01 and 𝜆 = 20.

• CycleMorph10 (Kim et al., 2021): In CycleMorph, the hy-
perparameters 𝛼, 𝛽, and 𝜆, correspond to the weights for cycle
loss, identity loss, and deformation field regularization. For inter-
patient brain MR registration, we set 𝛼 = 0.1, 𝛽 = 0.5, and
𝜆 = 0.02. Whereas for atlas-to-patient brain MR registration, we
set 𝛼 = 0.1, 𝛽 = 0.5, and 𝜆 = 1. These values were recommended
in Kim et al. (2021) as the optimal values for neuroimaging.
For XCAT-to-CT registration, we modified the CycleMorph by
adding a Dice loss with a weighting of 1 to incorporate or-
gan segmentation during training, and we set 𝛼 = 0.1 and
𝛽 = 1. We observed that the 𝜆 value of 1 suggested in Kim
et al. (2021) yielded over-smoothed deformation field in our
application. Therefore, the value of 𝜆 was decreased to 0.1.

• MIDIR11 (Qiu et al., 2021): The same loss function and 𝜆 value
as VoxelMorph were used. In addition, the control point spacing
𝛿 for B-spline transformation was set to 2 for all tasks, which was
shown to be an optimal value in Qiu et al. (2021).

o evaluate the proposed Swin-Transformer-based network architec-
ure, we compared its performance to existing Transformer-based net-
orks that achieved state-of-the-art performance in other applica-

ions (e.g., image segmentation, object detection, etc.). We customized
hese models to make them suitable for image registration. They were
odified to produce 3-dimensional deformation fields that warp the

7 https://github.com/brianlee324/torch-lddmm
8 http://voxelmorph.csail.mit.edu
9 http://voxelmorph.csail.mit.edu

10 https://github.com/boahK/MEDIA_CycleMorph
11
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https://github.com/qiuhuaqi/midir
Table 1
The ablation study of TransMorph models with skip connections and positional
embedding. ‘‘Conv. skip.’’ denotes the skip-connections from convolutional layers
(indicated by green arrows in Fig. 1); ‘‘Trans. skip,’’ denotes the skip-connections
from the Transformer blocks (indicated by orange arrows in Fig. 1); ‘‘lrn. positional
embedding’’ denotes the learnable positional embedding; ‘‘sin. positional embedding’’
denotes the sinusoidal positional embedding.

Model Conv. skip. Trans. skip. Parameters (M)

w/o conv. skip. ✓ – 46.70
w/o Trans. skip. – ✓ 41.55
w/o positional embedding ✓ ✓ 46.77
w/shuffling ✓ ✓ 46.77
w/rel. positional bias ✓ ✓ 46.77
w/lrn. positional embedding ✓ ✓ 63.63
w/sin. positional embedding ✓ ✓ 46.77

given moving image. Note that the only change between the meth-
ods below and VoxelMorph is the network architecture, with the
spatial transformation function, loss function, and network training
procedures remaining the same. The first three models used the hy-
brid Transformer-ConvNet architecture (i.e., ViT-V-Net, PVT, and
CoTr), while the last model used a pure Transformer-based architec-
ture (i.e., nnFormer). Their network hyperparameter settings were as
follows:

• ViT-V-Net12 (Chen et al., 2021a): This registration network was
developed based on ViT (Dosovitskiy et al., 2020). We applied the
default network hyperparameter settings suggested in Chen et al.
(2021a).

• PVT13 (Wang et al., 2021c): The default settings were applied, ex-
cept that the embedding dimensions were to be {20, 40, 200, 320},
the number of heads was set to {2, 4, 8, 16}, and the depth was
increased to {3, 10, 60, 3} to achieve a comparable number of
parameters to that of TransMorph.

• CoTr14 (Xie et al., 2021): We used the default network settings
for all registration tasks.

• nnFormer15 (Zhou et al., 2021): Because nnFormer was also
developed on the basis of Swin Transformer, we applied the same
Transformer hyperparameter values as in TransMorph to make
a fair comparison.

4.3. Implementation details

The proposed TransMorph was implemented using
PyTorch (Paszke et al., 2019) on a PC with an NVIDIA TITAN RTX GPU
and an NVIDIA RTX3090 GPU. All models were trained for 500 epochs
using the Adam optimization algorithm, with a learning rate of 1×10−4

and a batch size of 1. The brain MR dataset was augmented with flip-
ping in random directions during training, while no data augmentation
was applied to the CT dataset. Restricted by the sizes of the image vol-
umes, the window sizes (i.e., {𝑀𝑥,𝑀𝑦,𝑀𝑧}) used in Swin Transformer
were set to {5, 6, 7} for MR brain registration, {5, 5, 5} for XCAT-to-
CT registration, respectively. The Transformer hyperparameter settings
for TransMorph are listed in the first row of Table 2. Note that the
variants of TransMorph (i.e., TransMorph-Bayes, TransMorph-
bspl, and TransMorph-diff) share the same Transformer set-
tings as TransMorph. The hyperparameter settings for each proposed
variant are described as follows:

• TransMorph: The identical loss function parameters as Voxel-
Morph were used for all tasks.

12 https://bit.ly/3bWDynR
13 https://github.com/whai362/PVT
14 https://github.com/YtongXie/CoTr
15
 https://github.com/282857341/nnFormer

https://github.com/brianlee324/torch-lddmm
http://voxelmorph.csail.mit.edu
http://voxelmorph.csail.mit.edu
https://github.com/boahK/MEDIA_CycleMorph
https://github.com/qiuhuaqi/midir
https://bit.ly/3bWDynR
https://github.com/whai362/PVT
https://github.com/YtongXie/CoTr
https://github.com/282857341/nnFormer
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Table 2
The architecture hyperparameters of the TransMorph models used in the ablation
study. ‘‘Embed. Dimension’’ denotes the embedding dimension, 𝐶, in the very first
stage (described in Section 3.2); ‘‘Swin-T’’. denotes Swin Transformer.

Model Embed.
Dimension

Swin-T. block
numbers

Head
numbers

Parameters
(M)

TransMorph 96 {2, 2, 4, 2} {4, 4, 8, 8} 46.77
TransMorph-tiny 6 {2, 2, 4, 2} {4, 4, 8, 8} 0.24
TransMorph-small 48 {2, 2, 4, 2} {4, 4, 4, 4} 11.76
TransMorph-large 128 {2, 2, 12, 2} {4, 4, 8, 16} 108.34
VoxelMorph-huge – – – 63.25

• TransMorph-Bayes: The identical loss function parameters
as VoxelMorph were applied here for all tasks. The dropout
probability was set to 0.15.

• TransMorph-bspl: The loss function settings for all tasks were
the same ones as those used in VoxelMorph. The control point
spacing, 𝛿, for B-spline transformation was also set to 2, the same
value used in MIDIR.

• TransMorph-diff: We applied the same loss function param-
eters as those used in VoxelMorph-diff.

The affine model presented in this work comprises of a compact
win Transformer. The Transformer parameter settings were identical
o TransMorph except that the embedding dimension was set to be
2, the numbers of Swin Transformer block were set to be {1, 1, 2, 2},

and the head numbers were set to be {1, 1, 2, 2}. The resulting affine
model has a total number of 19.55 millions of parameters and a
computational complexity of 0.4 GMacs. Because the MRI datasets were
affinely aligned as part of the preprocessing, the affine model was only
used in the XCAT-to-CT registration.

4.4. Additional studies

In this section, we present experiments designed to verify the effect
of the various Transformer modules in TransMorph architecture.
Specifically, we carried out two additional studies of network compo-
nents and model complexity. They are performed using the validation
datasets from the three registration tasks, and the system-level compar-
isons are reported on test datasets. The following subsections provide
detailed descriptions of these studies.

4.4.1. Ablation study on network components
We begin by examining the effects of several network components

on registration performance. Table 1 lists three variants of Trans-
Morph that either keep or remove the network’s long skip connections
or the positional embeddings in the Transformer encoder. In ‘‘w/o
conv. skip’’., the long skip connections from the two convolutional
layers were removed (including two convolutional layers), which are
the green arrows in Fig. 1. In ‘‘w/o trans. skip.’’, the long skip connec-
tions coming from the Swin Transformer blocks were removed, which
are the orange arrows in Fig. 1. We claimed in Section 3.2 that the
positional embedding (i.e., 𝐄𝑝𝑜𝑠 in Eq. (8)) was not a necessary element
of TransMorph, because the positional information of tokens can be
learned implicitly in the network via the consecutive up-sampling in
the decoder and backpropagating the loss between output and target.
Here, we conducted experiments to study the effectiveness of positional
embeddings. Table 1 also lists five variants of TransMorph that either
keep or remove the positional embeddings in the Transformer encoder.
In the third variation, ‘‘w/o positional embedding’’, we did not employ
any type of positional embedding. In the fourth variant, ‘‘w/ shuffling’’,
we did not employ any positional embedding but instead randomly
shuffled the positions of the tokens (i.e., the dimension 𝑁 of 𝐳 in
Eqs. (8) and (9)) just before the self-attention calculation. Following
the self-attention calculation, the positions are permuted back into their
11

original order. This way, the self-attention modules in the Transformer
Table 3
Quantitative evaluation results of the inter-patient (i.e., the JHU dataset) and the atlas-
to-patient (i.e., the IXI dataset) brain MRI registration (left table), and XCAT-to-CAT
registration (right table). Dice score and percentage of voxels with a non-positive
Jacobian determinant (i.e., folded voxels) are evaluated for different methods. The
bolded numbers denote the highest scores, while the italicized ones indicate the second
highest.

Model Inter-patient MRI Atlas-to-patient MRI

DSC % of |𝐽𝜙 | ≤ 0 DSC % of |𝐽𝜙 | ≤ 0

Affine 0.572 ± 0.166 – 0.386 ± 0.195 –
SyN 0.729 ± 0.127 <0.0001 0.645 ± 0.152 <0.0001
NiftyReg 0.723 ± 0.131 0.061 ± 0.093 0.645 ± 0.167 0.020 ± 0.046
LDDMM 0.716 ± 0.131 <0.0001 0.680 ± 0.135 <0.0001
deedsBCV 0.719 ± 0.130 0.253 ± 0.110 0.733 ± 0.126 0.147 ± 0.050
VoxelMorph-1 0.718 ± 0.134 0.426 ± 0.231 0.729 ± 0.129 1.590 ± 0.339
VoxelMorph-2 0.723 ± 0.132 0.389 ± 0.222 0.732 ± 0.123 1.522 ± 0.336
VoxelMorph-diff 0.715 ± 0.137 <0.0001 0.580 ± 0.165 <0.0001
CycleMorph 0.719 ± 0.134 0.231 ± 0.168 0.737 ± 0.123 1.719 ± 0.382
MIDIR 0.710 ± 0.132 <0.0001 0.742 ± 0.128 <0.0001
ViT-V-Net 0.729 ± 0.128 0.402 ± 0.249 0.734 ± 0.124 1.609 ± 0.319
PVT 0.729 ± 0.130 0.427 ± 0.254 0.727 ± 0.128 1.858 ± 0.314
CoTr 0.725 ± 0.131 0.415 ± 0.258 0.735 ± 0.135 1.292 ± 0.342
nnFormer 0.729 ± 0.128 0.399 ± 0.234 0.747 ± 0.135 1.595 ± 0.358

TransMorph-Bayes 0.744 ± 0.125 0.389 ± 0.241 0.753 ± 0.123 1.560 ± 0.333
TransMorph-diff 0.730 ± 0.129 <0.0001 0.594 ± 0.163 <0.0001
TransMorph-bspl 0.740 ± 0.123 <0.0001 0.761 ± 0.122 <0.0001
TransMorph 0.745 ± 0.125 0.396 ± 0.240 0.754 ± 0.124 1.579 ± 0.328

Table 4
Quantitative evaluation results of XCAT-to-CT registration. Dice score of 16 organs,
percentage of voxels with a non-positive Jacobian determinant (i.e., folded voxels),
and SSIM are evaluated for different methods. The bolded numbers denote the highest
scores, while the italicized ones indicate the second highest.

Model DSC % of |𝐽𝜙| ≤ 0 SSIM

w/o registration 0.220 ± 0.242 – 0.576 ± 0.071
Affine Transformer 0.330 ± 0.291 – 0.751 ± 0.018
SyN 0.498 ± 0.342 0.001 ± 0.002 0.894 ± 0.021
NiftyReg 0.488 ± 0.333 0.025 ± 0.046 0.886 ± 0.027
LDDMM 0.519 ± 0.265 0.006 ± 0.007 0.874 ± 0.031
deedsBCV 0.568 ± 0.306 0.126 ± 0.123 0.863 ± 0.029
VoxelMorph-1 0.532 ± 0.313 2.275 ± 1.283 0.899 ± 0.027
VoxelMorph-2 0.548 ± 0.317 1.696 ± 0.909 0.910 ± 0.027
VoxelMorph-diff 0.526 ± 0.330 <0.0001 0.911 ± 0.020
CycleMorph 0.528 ± 0.321 3.263 ± 1.188 0.909 ± 0.024
MIDIR 0.551 ± 0.303 <0.0001 0.896 ± 0.022
ViT-V-Net 0.582 ± 0.311 2.109 ± 1.032 0.915 ± 0.020
PVT 0.516 ± 0.321 2.939 ± 1.162 0.900 ± 0.027
CoTr 0.550 ± 0.313 1.530 ± 1.052 0.905 ± 0.029
nnFormer 0.536 ± 0.315 1.371 ± 0.620 0.902 ± 0.024

TransMorph-Bayes 0.594 ± 0.313 1.475 ± 0.857 0.919 ± 0.024
TransMorph-diff 0.541 ± 0.324 <0.0001 0.910 ± 0.025
TransMorph-bspl 0.575 ± 0.311 <0.0001 0.908 ± 0.025
TransMorph 0.604 ± 0.314 1.679 ± 0.772 0.918 ± 0.023

encoder are truly invariant to the order of the tokens. In the fifth
variant, ‘‘w/rel. positional bias’’, we used the relative positional bias
in the self-attention computation (i.e. 𝐵 in Eq. (10)) as used in the
Swin Transformer (Liu et al., 2021a). In the second to last variant,
‘‘w/lrn. positional embedding’’, we added the same learnable positional
embedding to the patch embeddings at the start of the Transformer
encoder as used in the ViT (Dosovitskiy et al., 2020) while keeping
the relative positional bias. In the last variant, ‘‘w/sin. positional em-
bedding’’, we substituted the learnable positional embedding with a
sinusoidal positional embedding, the same embedding used in the origi-
nal Transformer (Vaswani et al., 2017), which hardcodes the positional
information in the tokens.

4.4.2. Model complexity study
The impact of model complexity on registration performance was

also investigated in this paper. Table 2 listed the parameter settings
and the number of trainable parameters of four variants of the proposed
TransMorph model. In the base model, TransMorph, the embedding
dimension 𝐶 was set to 96, and the number of Swin Transformer blocks
in the four stages of the encoder was set to 2, 2, 4, and 2, respectively.
Additionally, we introduced TransMorph-tiny, TransMorph-small,

and TransMorph-large, which are about 1∕200×, 1∕4×, and 2× the
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Table 5
Quantitative evaluation results for brain MRI registration of the OASIS dataset from
the 2021 Learn2Reg challenge task 3. Dice score of 35 cortical and subcortical
brain structures, the 95th percentile percentage of the Hausdorff distance, and the
standard deviation of the logarithm of the Jacobian determinant (SDlogJ) of the
displacement field are evaluated for different methods. The validation results came from
the challenge’s leaderboard, whereas the test results came directly from the challenge’s
organizers. The bolded numbers denote the highest scores, while the italicized ones
indicate the second highest.

Validation

Model DSC HdDist95 SDlogJ

Lv et al. (2022) 0.827 ± 0.013 1.722 ± 0.318 0.121 ± 0.015
Siebert et al. (2021) 0.846 ± 0.016 1.500 ± 0.304 0.067 ± 0.005
Mok and Chung (2021) 0.861 ± 0.015 1.514 ± 0.337 0.072 ± 0.007
VoxelMorph-huge 0.847 ± 0.014 1.546 ± 0.306 0.133 ± 0.021
TransMorph 0.858 ± 0.014 1.494 ± 0.288 0.118 ± 0.019
TransMorph-Large 0.862 ± 0.014 1.431 ± 0.282 0.128 ± 0.021

Test

Model DSC HdDist95 SDlogJ

Initial 0.56 3.86 –
Lv et al. (2022) 0.80 1.77 0.08
Siebert et al. (2021) 0.81 1.63 0.07
Mok and Chung (2021) 0.82 1.67 0.07
TransMorph 0.816 1.692 0.124
TransMorph-Large 0.820 1.656 0.124

Fig. 7. The number of parameters in each deep-learning-based model. The values are
in units of millions of parameters.

model size of TransMorph. Finally, we compared our model to a
customized VoxelMorph (denoted VoxelMorph-huge), which has a
comparable parameter size to that of TransMorph w/lrn. positional
embedding. Specifically, we maintained the same number of layers in
VoxelMorph-huge as in VoxelMorph, but increased the number of
convolution kernels in each layer. As a result, VoxelMorph-huge has
63.25 million trainable parameters.

4.5. Evaluation metrics

The registration performance of each model was evaluated based
on the volume overlap between anatomical/organ segmentation, which
was quantified using the Dice score (Dice, 1945). We averaged the Dice
scores of all anatomical/organ structures for all patients. The mean
and standard deviation of the averaged scores were compared across
various registration methods.

To quantify the regularity of the deformation fields, we also re-
ported the percentages of non-positive values in the determinant of the
Jacobian matrix on the deformation fields (i.e., |𝐽 | ≤ 0).
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Additionally, for XCAT-to-CT registration, we used the structural
similarity index (SSIM) (Wang et al., 2004) to quantify the structural
difference between the deformed XCAT and the target CT images. The
mean and standard deviation of the SSIM values of all patients were
reported and compared.

5. Results

5.1. Inter-patient brain MRI registration

The top-left panel of Fig. 8 shows the qualitative results of a sample
slice for inter-patient brain MRI registration. The scores in blue, orange,
green, and pink correspond to ventricles, third ventricle, thalami, and
hippocampi, respectively. Additional qualitative comparisons across
all methods are shown in Fig. C.20 in Appendix C. Among the pro-
posed models, diffeomorphic variants (i.e., TransMorph-diff and
TransMorph-bspl) generated smoother displacement fields, with
TransMorph-bspl producing the smoothest deformations inside the
brain area. On the other hand, TransMorph and TransMorph-
Bayes showed better qualitative results (highlighted by the yellow
arrows) with higher Dice scores for the delineated structures.

The quantitative evaluations are shown in Table 3. The results
presented in the table show that the proposed method, TransMorph,
achieved the highest mean Dice score of 0.745. Although the diffeomor-
phic variants produced slightly lower Dice scores than TransMorph,
they still outperformed the existing registration methods and gener-
ated almost no foldings (i.e., ∼ 0% of |𝐽𝜙| ≤ 0) in the deformation
fields. By comparison, TransMorph improved Dice score by >0.2
when compared to VoxelMorph and CycleMorph. We found that
the Transformer-based models (i.e., TransMorph, ViT-V-Net, PVT,
CoTr, and nnFormer) generally produced better Dice scores than
the ConvNet-based models. Note that even though ViT-V-Net had
almost twice the number of the trainable parameters (as shown in
Fig. 7), TransMorph still outperformed all the Transformer-based
models (including ViT-V-Net) by at least 0.1 in the Dice score,
demonstrating Swin-Transformer’s superiority over other Transformer
architectures. When we conducted hypothesis testing on the results
using the paired 𝑡-test with Bonferroni correction (Armstrong, 2014)
(i.e., dividing the 𝑝-values by 13, the total number of the paired 𝑡-tests
performed), the 𝑝-values between the best performing TransMorph
variant (i.e., TransMorph) and all other methods were 𝑝 ≪ 0.0005.

Figs. C.21 and C.22 show additional Dice results for a variety
of anatomical structures, with Fig. C.21 comparing TransMorph
to current registration techniques (both optimization- and learning-
based methods), and Fig. C.22 comparing the Dice scores between the
Transformer-based models.

5.2. Atlas-to-patient brain MRI registration

The top-right panel of Fig. 8 shows the qualitative results of the
TransMorph variants on a sample MRI slice for atlas-to-patient brain
MRI registration. As highlighted by the yellow arrows, the diffeomor-
phic variants resulted in the deformed images that were less compa-
rable to the fixed image in terms of visual appearance. In contrast,
the variants without diffeomorphic deformations (i.e., TransMorph
and TransMorph-Bayes) produced better qualitative results, with
the sulci in the deformed atlas images more closely matching those
in the fixed image. Additional qualitative comparisons are shown in
Fig. D.23 in Appendix D, where we observed that all the learning-
based methods yielded more detailed and precise deformation fields
than the conventional methods. This might be owing to the high
parameterization of the DNNs, which enables the modeling of more
complicated deformations.

Table 3 shows the quantitative evaluation results of the atlas-to-
patient registration. The highest mean Dice score of 0.761 was achieved
by the proposed TransMorph-bspl with nearly no folded voxels.
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Fig. 8. Qualitative results of TransMorph (2nd column) and its Bayesian- (3rd column), probabilistic- (4th column), and B-spline (5th column) variants. Top-left & Top-right
panels: Results of inter-patient and atlas-to-patient brain MRI registration. The blue, orange, green, and pink contours define, respectively, the ventricles, third ventricle, thalami,
and hippocampi. Bottom panel: Results of XCAT-to-CT registration. The blue, orange, green, and pink contours define, respectively, the liver, heart, left lung, and right lung. The
second row in both panels exhibits the displacement fields 𝐮, where spatial dimension 𝑥, 𝑦, and 𝑧 is mapped to each of the RGB color channels, respectively. The [𝑝, 𝑞] in color
bars denotes the magnitude range of the fields.
The second best Dice score of 0.754 was achieved by both Trans-
Morph and TransMorph-Bayes, while TransMorph-Bayes
yielded a smaller standard deviation. In comparison to these Trans-
Morph variants, TransMorph-diff produced a lower Dice score of
0.594. However, note that this score is still higher (∼0.02) than the
one produced by VoxelMorph-diff, which is the base model of
TransMorph-diff. Additionally, we observed that the registration
methods that used MSE for training or optimization resulted in lower
Dice scores (i.e., SyN, NiftyReg, LDDMM, VoxelMorph-diff, and
TransMorph-diff). This was most likely due to the significant
disparity in the intensity values of brain sulci between the atlas and
the patient MRI images. As seen in the top-right panel of Fig. 8, the
sulci in the atlas image (i.e., the moving image) exhibited low-intensity
values comparable to the background, but the sulci in the patient MRI
image had intensity values more comparable to the neighboring gyri.
Thus, the discrepancies in the sulci intensity values may account for the
majority of the MSE loss during training, compelling the registration
models to fill the sulci in the atlas image with other brain structures
(as shown in Fig. D.23, these models produced significantly smaller
sulci than models trained with LNCC), thereby limiting registration
performance. The paired 𝑡-tests with Bonferroni correction (Armstrong,
2014) revealed the 𝑝-values of 𝑝 ≪ 0.0005 between the best performing
model (i.e., TransMorph-bspl) and all other methods. This indicates
that the proposed method outperformed the comparative registration
methods and network architectures.
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A detailed breakdown of Dice scores for a variety of anatomical
structures is shown in Figs. D.24 and D.25 in Appendix D.

5.3. Learn2Reg OASIS brain MRI registration

Table 5 shows the quantitative results of the validation and test sets
of the challenge. The validation scores of the various methods were
obtained from the leaderboard of the challenge, whilst the test scores
were obtained directly from the organizers. TransMorph performed
similarly to the best-performing method (LapIRN (Mok and Chung,
2021)) of the challenge on the validation set, where TransMorph-
large achieved the best mean Dice score of 0.862 and mean HdDist95 of
1.431. VoxelMorph-huge performed significantly poor than Trans-
Morph, with a 𝑝-value less than 0.01 from paired 𝑡-test. This reveals
the superiority of Transformer-based architecture over ConvNet de-
spite having a comparable number of parameters. On the test set,
the TransMorph and TransMorph-large achieved comparable mean
Dice score to that of LapIRN. Despite the comparable performance,
LapIRN produced much smoother deformation fields as measured
by SDlogJ. In a separate study, we presented a simple extension of
TransMorph that significantly outperformed LapIRN while main-
taining smooth deformation fields. We direct interested readers to Chen
et al. (2022) for further details. Moreover, LapIRN employed a mul-
tiresolution framework in which three ConvNet registration backbones
were involved in generating deformation fields at three different scales.
TransMorph, however, operated on a single resolution. We underline
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that TransMorph is a registration backbone, and that it may be easily
adapted to LapIRN or any advanced registration frameworks.

.4. XCAT-to-CT registration

The bottom panel of Fig. 8 shows the qualitative results for a
epresentative CT slice. The blue, orange, green, and pink lines denote
he liver, heart, left lung, and right lung, respectively, while the bottom
alues show the corresponding Dice scores. Similar to the findings in
he previous sections, TransMorph and TransMorph-Bayes gave

more accurate registration results (highlighted by the yellow arrows
and the delineated structures), while the diffeomorphic variants pro-
duced smoother deformations. Additional qualitative comparisons are
shown in Fig. E.26 in Appendix E. It is possible to see certain artifacts in
the displacement field created by nnFormer (as shown in Fig. E.26);
these were most likely caused by the patch operations of the Trans-
formers used in its architecture. nnFormer is a near-convolution-free
model (convolutional layers are employed only to form displacement
fields). In contrast to the relatively small displacements in brain MRI
registration, displacements in XCAT-to-CT registration may exceed the
patch size. Consequently, the lack of convolutional layers to refine the
stitched displacement field patches may have resulted in artifacts. Four
example coronal slices of the deformed XCAT phantoms generated by
various registration methods are shown in Fig. E.27 in Appendix E.

The quantitative evaluation results are presented in Table 4. They
include Dice scores for all organs and scans, the percentage of non-
positive Jacobian determinants, and the structural similarity index
(SSIM) (Wang et al., 2004) between the deformed XCAT phantom and
the target CT scan. The window size used in SSIM was set to 7. Without
registration or affine transformation, a Dice score of 0.22 and an SSIM
of 0.576 demonstrate the large dissimilarity between the original XCAT
phantom and patient CT scans. The Dice score and SSIM increased
to 0.33 and 0.751, respectively, after aligning the XCAT and patient
CT using the proposed affine Transformer. Among the traditional reg-
istration methods, deedsBCV, which was initially designed for ab-
dominal CT registration-based segmentation (Heinrich et al., 2015),
achieved the highest Dice score of 0.568, which is even higher than
most of the learning-based methods. Among the learning-based meth-
ods, Transformer-based models outperformed ConvNet-based models
on average, which is consistent with the findings from the brain MR
registration tasks. The 𝑝-values from the paired 𝑡-tests with Bonfer-
roni correction (Armstrong, 2014) between TransMorph and all non-
TransMorph methods were 𝑝 ≪ 0.05. The proposed TransMorph
models yielded the highest Dice and SSIM scores of all methods in
general, with the best Dice of 0.604 given by TransMorph and the
best SSIM of 0.919 given by TransMorph-Bayes. The diffeomorphic
variants produced lower Dice and SSIM scores as a consequence of not
having any folded voxels in the deformation.

Figs. E.28 and E.29 show additional boxplots of Dice scores on the
various abdominal organs, with Fig. E.28 comparing TransMorph
to current registration techniques (both optimization- and learning-
based methods), and Fig. E.29 comparing the Dice scores between the
Transformer-based models.

5.5. Ablation studies

Inter-patient registration. The first figure in the first row of Fig. 9 shows
the violin plots of Dice scores from the ablation study on the validation
dataset of inter-patient brain MR registration. When evaluating the
effectiveness of skip connections, we observed that the skip connections
from both the convolution and Transformer layers improved registra-
tion performance. TransMorph scored a mean Dice of 0.753 after
the skip connections from the convolutional layers were removed.
However, the score decreased to 0.740 when the skip connections
from the Transformer blocks were removed. In comparison, the skip
connections from convolutional layers were less effective, with a mean
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Dice improvement of 0.003. Note that the TransMorph with shuffling,
and with and without positional embeddings all generated comparable
mean Dice scores and violin plots, suggesting that positional embedding
may not be necessary.

Atlas-to-patient registration. The violin plots from the ablation study on
the atlas-to-patient registration task are shown in the second figure in
the first row of Fig. 9. Comparable violin plots with similar mean Dice
scores around 0.752 were observed with and without the skip connec-
tions from the convolutional layers. When the skip connections from the
Transformer blocks were removed, the Dice score decreased by 0.019,
reflecting the effectiveness of these skip connections. Comparable violin
plots and mean Dice scores around 0.750 were observed with shuffling,
and with and without various positional embeddings, confirming that
TransMorph’s performance is unaffected by whether or not positional
embedding was used.

XCAT-to-CT registration. The second to last figure in the first row of
Fig. 9 shows the violin plots from the validation dataset of XCAT-to-CT
registration task. Without the skip connections from the convolution
and Transformer layers, the Dice scores dropped by 0.013 and 0.016,
respectively, when compared to TransMorph, further supporting the
observation that skip connections can improve performance. Learnable
and relative positional embeddings yielded comparable mean Dice
scores for XCAT-to-CT registration in the range of 0.593. When si-
nusoidal positional embedding was employed, a score of 0.583 was
attained, whereas a score of 0.588 was produced when the positions
were shuffled. With a score of 0.600, without using positional embed-
dings yielded a slight improvement among other variants. The effect
of each component is addressed in depth in the Discussion section
(Section 6.1).

In conclusion, the results from all three tasks (i.e., inter-patient,
atlas-to-patient, and XCAT-to-CT registration tasks) indicate that using
skip connections improves performance. The results also reveal that
with and without using positional embedding or even randomly shuf-
fling the token positions provided similar performances. Additionally,
we applied the TranMorph models to the test datasets of the three
registration tasks for system-level comparisons, and the results are
shown in the upper panel of Table 6. The scores on the test datasets
followed the same trend as those on the validation datasets, where the
positional embeddings had an insignificant influence on registration
performance.

5.6. Computational complexity

The barplot in the left panel of Fig. 10 shows the computational
complexity comparisons between the deep-learning-based registration
models. The plot was created using an input image with a resolution of
160 × 192 × 224, the same size as the brain MRI images. The numbers
were expressed in Giga multiply-accumulate operations (GMACs), with
a higher value indicating a more computationally expensive model that
may also be more memory intensive. The proposed model, Trans-
Morph, and its Bayesian variant, TransMorph-Bayes, had a mod-
erate computational complexity with 687 GMACs which is much less
than CoTr and CycleMorph. In practice, the GPU memory occupied
during training for TransMorph was about 15 GiB with a batch size of
1 and an input image size of 160 × 192 × 224. The diffeomorphic vari-
ants, TransMorph-diff and TransMorph-bspl, had 281 and 454
GMACs, which are comparable to that of the conventional ConvNet-
based registration models, VoxelMorph-1 and -2. In practice, they
occupied approximately 11 GiB of GPU memory during training, which
is a size that can be readily accommodated by the majority of modern
GPUs. In terms of the number of parameters, all ConvNet-based models
had fewer than 1M network parameters (as shown in Fig. 7); yet their
GMACs (i.e., computational complexity) were comparable to Trans-
Morph, but their registration performances were significantly inferior.
Transformer-based models were all of large scale, with more than
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Fig. 9. Quantitative evaluation results of the additional studies performed on the validation datasets of the two brain MRI and XCAT-to-CT registration tasks.

Fig. 10. Model computational complexity comparisons represented in Giga multiply–accumulate operations (GMACs). Greater values imply a greater degree of computational
complexity. These values were obtained using an input image of size 160 × 192 × 224.

Fig. 11. Examples of feature maps in TransMorph’s skip connections. Eight feature maps are randomly selected from the feature maps associated with each skip connection. Left
panel: Example 2D slices of source and target images (i.e., 𝐼𝑚 and 𝐼𝑓 ), which are used as inputs to TransMorph. Middle panel: Feature maps in the skip connections of the two
convolutional layers (denoted by the green arrows in Fig. 1). Right panel: Feature maps in the skip connections of the Swin Transformer blocks (denoted by the orange arrows in
Fig. 1).
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Table 6
System-level comparison of various TransMorph designs and the customized VoxelMorph on the test datasets of inter-patient MRI and XCAT-to-CT registration tasks. ‘‘Val.
DSC’’ denotes the Dice scores on the validation dataset; ‘‘Test DSC’’ denotes the system-level comparison of the Dice scores on the test dataset. The bolded numbers denote the
highest scores, while the italicized ones indicate the second highest.

Model Inter-patient MRI Atlas-to-patient MRI XCAT-to-CT

Val. DSC Test DSC Val. DSC Test DSC Val. DSC Test DSC

w/o conv. skip. 0.753 ± 0.119 0.743 ± 0.124 0.752 ± 0.129 0.754 ± 0.125 0.591 ± 0.319 0.586 ± 0.314
w/o Trans. skip. 0.740 ± 0.124 0.727 ± 0.130 0.734 ± 0.127 0.736 ± 0.125 0.578 ± 0.315 0.588 ± 0.314
w/shuffling 0.755 ± 0.119 0.744 ± 0.125 0.751 ± 0.127 0.754 ± 0.123 0.588 ± 0.314 0.597 ± 0.310
w/rel. positional bias 0.755 ± 0.120 0.742 ± 0.125 0.751 ± 0.131 0.753 ± 0.127 0.593 ± 0.315 0.592 ± 0.319
w/lrn. positional embedding 0.755 ± 0.120 0.744 ± 0.125 0.749 ± 0.131 0.751 ± 0.129 0.594 ± 0.315 0.586 ± 0.315
w/sin. positional embedding 0.755 ± 0.120 0.744 ± 0.125 0.752 ± 0.126 0.754 ± 0.123 0.583 ± 0.320 0.572 ± 0.317

TransMorph 0.756 ± 0.119 0.745 ± 0.125 0.753 ± 0.127 0.754 ± 0.124 0.600 ± 0.317 0.604 ± 0.314
TransMorph-tiny 0.710 ± 0.132 0.696 ± 0.140 0.545 ± 0.180 0.543 ± 0.180 0.502 ± 0.311 0.501 ± 0.312
TransMorph-small 0.751 ± 0.121 0.740 ± 0.126 0.746 ± 0.128 0.747 ± 0.125 0.572 ± 0.320 0.570 ± 0.318
TransMorph-large 0.757 ± 0.119 0.746 ± 0.124 0.753 ± 0.130 0.754 ± 0.128 0.608 ± 0.305 0.611 ± 0.311
VoxelMorph-huge 0.755 ± 0.119 0.744 ± 0.124 0.750 ± 0.133 0.751 ± 0.130 0.543 ± 0.320 0.550 ± 0.319
30M parameters. Notably, ViT-V-Net and PVT had around 2× and
1.5× more parameters than TransMorph, nevertheless TransMorph
outperformed them by a significant margin on all of the evaluated
registration tasks. This demonstrates that the success of TransMorph
owes not just to the large model size but also to the architecture itself.

Fig. 9 shows the quantitative results of TransMorph models with
various architectural settings and the customized ConvNet-based model
VoxelMorph-huge on the validation datasets of the three registration
datasets. When parameter size is the only variable in TransMorph
models, there is a strong correlation between model complexity (as
shown in the right panel of Fig. 10) and registration performance.
TransMorph-tiny produced the lowest mean Dice of 0.710, 0.545,
and 0.502 on the validation set of the three registration tasks, re-
spectively. The Dice score steadily improves as the complexity of the
model increases. Note that for inter-patient and atlas-to-patient brain
MRI registration (the first and second figures in the bottom row of
Fig. 9), the improvement in mean Dice score from TransMorph to
TransMorph-large were mostly under 0.01 but the latter was al-
most twice as computationally costly (as shown in the right panel of
Fig. 10). The customized ConvNet-based model, VoxelMorph-huge,
had the comparable number of parameters as TransMorph. However,
it achieved slightly lower mean Dice scores than those of TransMorph
for the JHU and IXI brain MR registration tasks, and significantly
lower scores for OASIS brain MR and the XCAT-to-CT registration task.
This further indicates the architectural advantages of TransMorph for
image registration. A significant disadvantage of VoxelMorph-huge
was its computational complexity, with 3656 GMACs (as seen in the
right panel of Fig. 10), it was nearly five times as computationally
expensive as TransMorph, making it memory-intensive (∼ 22 GiB
for a patch size of 1 during training) and slow to train in practice.
However, TransMorph was able to accommodate a larger number of
parameters without significantly increasing computational complexity.
The promising performances brought by the larger scale of parameters
demonstrate the superior scaling property of Transformer-based models
as described in Zhai et al. (2022), Liu et al. (2022). The TranMorph
models with different model parameter settings and VoxelMorph-
huge were applied to the test datasets for system-level comparisons,
and the results are shown in the bottom panel of Table 6.

6. Discussion

6.1. Network components in TransMorph

6.1.1. Skip connections
As previously shown in Section 5.5, skip connections may aid in

enhancing registration accuracy. In this section, we give further insight
into the skip connections’ functionality.

Fig. 11 shows some example feature maps in each skip connection
(a full feature map visualization is shown in Fig. G.31 in Appendix).
16
Fig. 12. Qualitative impact of skip connections on the deformation fields. The spatial
dimension 𝑥, 𝑦, and 𝑧 in the displacement field is mapped to each of the RGB color
channels, respectively. The [𝑝, 𝑞] in color bars denotes the magnitude range of the
fields.

Specifically, the left panel shows sample slices of the input volumes; the
center panel illustrates selected feature maps in the skip connections of
the convolutional layers, and the right panel illustrates selected feature
maps in the skip connections of the Swin Transformer blocks. As seen
from these feature maps that the Swin Transformer blocks provided
more abstract information (right panel in Fig. 11), in comparison to
the convolutional layers (middle panel in Fig. 11). Since a Transformer
divides an input image volume into patches to create tokens for self-
attention operations (as described in Section 3.2), it can only deliver
information up to a certain resolution, which is often a factor of the
patch size lower than the original resolution (i.e., 𝐻

𝑃 × 𝑊
𝑃 × 𝐿

𝑃 , and
𝑃 = 4 in our case). On the other hand, the convolutional layers resulted
in higher resolution feature maps with more detailed and human-
readable information (e.g., edge and boundary information). Certain
feature maps even revealed distinctions between the moving and fixed
images (highlighted by the red boxes). Fig. 12 shows the qualitative
comparisons between the proposed model with and without a specific
type of skip connection. As seen by the magnified areas, TransMorph
with both skip connection types provided a more detailed and accurate
displacement field. Therefore, adding the skip connections from the
convolutional layers is still recommended, although the actual Dice
improvement were subtle on the validation datasets (0.003 for inter-
patient brain MRI, 0.001 for atlas-to-patient brain MRI, and 0.009 for
XCAT-to-CT registration).

6.1.2. Positional embedding
Transformers in computer vision were initially designed for image

classification tasks (Dosovitskiy et al., 2020; Liu et al., 2021a; Dong
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Fig. 13. Example slice of the positional embeddings used in TransMorph. Left panel:
Sinusoidal positional embedding. Right panel: Learnable positional embedding. Tiles in
both panels show the cosine similarities between the position embedding of the token
with the indicated row and column and the position embeddings of all other tokens.

et al., 2021; Wang et al., 2021c). Such a Transformer produces a
condensed probability vector that is not in the image domain but
instead a description of the likelihood of being a certain class. The
loss calculated based on this vector does not backpropagate any spatial
information into the network. Thus, it is critical to encode positional
information on the patched tokens; otherwise, as the network gets
deeper, Transformer would lose track of the tokens’ locations relative to
the input image, resulting in unstable training and inferior predictions.
However, for pixel-level tasks like image registration, the condensed
features generated by Transformers are often subsequently expanded
using a decoder whose output is an image with the same resolution
as the input and target images. Any spatial mismatches between the
output and target contributes to the loss, which is then backpropa-
gated throughout the network. As a result, the Transformer implicitly
learns the positional information of tokens, thus obviating the need
for positional embedding. In this work, we compared the registration
performance of TransMorph and TransMorph with positional em-
bedding on brain MRI and XCAT-to-CT registration. The results shown
in Section 5.5 indicated that positional embedding did not improve
registration performance; rather, it introduced more parameters into
the network. In this section, we discuss the positional embeddings in
further detail.

Three positional embeddings were studied in this paper: sinu-
soidal (Vaswani et al., 2017), learnable (Dosovitskiy et al., 2020),
and relative (Liu et al., 2021a) embeddings, which are also the major
types of positional embedding. In sinusoidal positional embedding, the
position of each patched token is represented by a value drawn from a
predetermined sinusoidal signal according to the token’s position rela-
tive to the input image. Whereas with learnable positional embedding,
the network learns the representation of the token’s location from the
training dataset rather than giving a hardcoded value. The relative
positional bias hardcodes the relative position relations between any
two tokens in the dot product of the query and key representations
(i.e., 𝐵 in Eq. (10)). To validate that the network learned the positional
information, (Dosovitskiy et al., 2020) computed the cosine similarities
between a learned embedding of a token and that of all other tokens.
The obtained similarity values were then used to form an image. If
positional information is learned, the image should reflect increased
similarities at the token’s and nearby tokens’ positions. Here, we
computed the images of cosine similarities for both sinusoidal and
learnable positional embeddings used in this work. The left and right
panels in Fig. 13 show the images of cosine similarities. These images
were generated based on an input image size of 160 × 192 × 224 and a
patch size of 4 × 4 × 4 (resulting in 40 × 48 × 56 patches). Each image
has a size of 40 × 48 representing an image of cosine similarities in the
plane of 𝑧 = 28 (i.e., the middle slice). There should have been a total
of 40 × 48 images in each panel. However, for better visualization, just
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a few images were shown here. The images were chosen with step sizes
of 5 and 8 in 𝑥 and 𝑦 direction, respectively, resulting in 6 × 5 images in
each panel. As seen from the left panel, the images of sinusoidal embed-
dings exhibit a structured pattern, showing a high degree of correlation
between tokens’ relative locations and image intensity values. Note
that the brightest pixel in each image represents the cosine similarity
between a token’s positional embedding and itself, which reflects the
token’s actual location relative to all other tokens. The similarity then
gradually decreases as it gets farther away from the token. On the
other hand, images generated with learnable embeddings (right panel
of Fig. 13) lack such structured patterns, implying that the network
did not learn the positional information associated with the tokens in
the learnable embeddings. To further demonstrate that the network
implicitly learned the positional information, we randomly shuffled
the token positions when computing self-attention during training and
testing. As a result, the self-attention modules could not explicitly
perceive input tokens’ positional information. However, as seen from
the Dice scores in Fig. 9, regardless of shuffling and which positional
embedding was employed, the mean Dice scores and violin plots were
quite comparable to those produced without positional embedding.
Thus, the findings confirmed that TransMorph learned the positional
information of the tokens implicitly and that the learnable, sinusoidal,
and relative positional embeddings were redundant in the model and
had a negligible effect on registration performance.

6.2. Uncertainty quantification of TransMorph-Bayes

As previously mentioned in Section 3.4, the appearance uncertainty
estimates produced by the predictive variance (Eq. (23)) were actually
miscalibrated, meaning that the uncertainty values did not properly
correlate to predicted model errors since variance was computed using
the predictive mean instead of target image 𝐼𝑓 . We proposed to directly
use the expected model error to express appearance uncertainty since
the target image is available at all times in image registration. Thus, the
resulting appearance uncertainty estimate is perfectly calibrated. In this
section, we examine how the proposed and existing methods differ in
their estimates of appearance uncertainty.

To quantify the calibration error, we used the Uncertainty Calibra-
tion Error (UCE) introduced in Laves et al. (2020a), which is calculated
on the basis of the binned difference between the expected model
error (i.e., E

[

(𝐼𝑚◦𝜙 − 𝐼𝑓 )2
]

) and the uncertainty estimation (e.g., 𝛴̂2
𝑓

in Eq. (23) or 𝛴2
𝑓 in Eq. (25)). We refer the interested reader to the

corresponding references for further details about UCE. The plots in
the left panel of Fig. 14 exhibit the calibration plots and UCE obtained
on four representative test sets. All results were based on a sample
size of 25 (i.e., 𝑇 = 25 in Eqs. (21), (23), and (25)) from 10 repeated
runs. The blue lines show the results produced with the 𝛴̂2

𝑓 and the
shaded regions represent the standard deviation from the 10 runs,
while the dashed black lines indicate the perfect calibration achieved
with the proposed method. Notice that the uncertainty values obtained
using 𝛴̂2

𝑓 did not match well to the expected model error; in fact,
they were consistently being underestimated (for reasons described in
Section 3.4.1). In comparison, the proposed method enabled perfect
calibration with UCE = 0 since its uncertainty estimate equaled the
expected model error. In the right panel of Fig. 14, we show the visual
comparisons of the uncertainty derived from 𝛴2

𝑓 and 𝛴̂2
𝑓 . When we

compare either (e) to (f) or (k) to (l), we see that the former (i.e., (e)
and (k)) captured more registration failures than the latter (as high-
lighted by the yellow arrows), indicating a stronger correlation between
deformation uncertainty and registration failures. This is thus further
evidence that the proposed method provides the perfect uncertainty
calibration.

Despite the promising results, there are some limitations of using
𝜎𝑓 to estimate appearance uncertainty. In this work, we modeled 𝜎𝑓
as E

[

(𝐼𝑚◦𝜙 − 𝐼𝑓 )2
]

, which is the MSE of the Monte Carlo sampled
registration outputs relative to the fixed image. MSE, on the other
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Fig. 14. Comparisons of the appearance uncertainty estimates derived from the predictive variance and the predicted model error. Left panel: Calibration plots and uncertainty
calibration error (UCE) for TransMorph-Bayes on two inter-patient brain MR test sets (top), two atlas-to-patient brain MR test sets (middle), and two XCAT-to-CT test sets
(bottom). The blue lines represent the results obtained using the uncertainty estimate 𝛴̂2

𝑓 . The dashed lines represent the perfect calibration, which are the results achieved when
the uncertainty estimate is 𝛴2

𝑓 or 𝑒𝑟𝑟(𝐼𝑚◦𝜙) (i.e., the expected model error). The values are obtained from 10 repeated runs, and the shaded regions represent the standard deviation.
Right panel: Visualization of the registration uncertainty on an inter-patient brain MRI test set (i.e., a–f), an atlas-to-patient brain MRI test set (i.e., g–l), and a CT test set (i.e., m–r).
(a), (g), & (m): Moving image. (b), (h), & (n): Fixed image. (c), (i), & (o): Deformed moving image. (d), (j), & (p): Per-pixel uncertainty, represented by 𝛴2

𝑓 , overlays the deformed
image. (e), (k), & (q): Per-pixel uncertainty given by 𝛴2

𝑓 (i.e., the proposed method). (f), (l), & (r): Per-pixel uncertainty given by 𝛴̂2
𝑓 . The yellow arrows highlight sites where 𝛴2

𝑓

identifies registration failures but 𝛴̂2
𝑓 does not.

Fig. 15. Example ERFs of VoxelMorph and the proposed Transformer-based model TransMorph. The top row shows the ERF slices (i.e., 𝑦 = 80) at each stage of the network
on an input image size of 160 × 160 × 160. For a consistent comparison of ERFs between VoxelMorph and TransMorph, the ERFs at 1/2 of VoxelMorph and 1/32 resolution
of TransMorph were omitted.
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Fig. 16. The loss landscapes of MIDIR, VoxelMorph-2, VoxelMorph-huge, and TransMorph, where the loss function is composed of LNCC and diffusion regularizer.
TransMorph yielded a much flatter landscape that those of ConvNet-based models.
hand, is not necessarily the optimal metric for expressing the expected
error. In multi-modal registration instances like PET to CT or MRI to CT
registration, MSE is anticipated to be high, given the vast difference in
image appearance and voxel values across modalities. Thus, if MSE is
employed to quantify the appearance uncertainty in these instances, the
uncertainty values will be dominated by the squared bias (i.e., (𝐼𝑓−𝐼𝑓 )2
in Eq. (B.3)), resulting in an ineffective uncertainty estimate. In these
instances, the predicted variance may be a more appropriate choice for
appearance uncertainty quantification.

Additional results for both appearance and transformation uncer-
tainty estimations are shown in Fig. F.30 in Appendix A. Observ-
ably, the two uncertainty measures provide estimates that are sub-
stantially different, with appearance uncertainty values being high in
locations with substantial appearance mismatches and transformation
uncertainty values being high in regions with large deformations and
generally constant intensity values.

6.3. Comparison of effective receptive fields

We demonstrate in this section that the effective receptive fields
(ERFs) of Transformer-based models are larger than that of ConvNet-
based models and span the whole spatial domain of an image. We used
the definition of ERF introduced in Luo et al. (2016), which quantifies
the amount of influence that each input voxel has on the output
of a neural network. In the next paragraph, we briefly discuss the
computation of ERF and recommend interested readers to the reference
for further information.

Assume the voxels in the input image 𝐼𝑚 and the output displace-
ment field 𝐮 are indexed by (𝑖, 𝑗, 𝑘), with an image size of
160 × 160 × 160 (i.e., the size of CT scans used in this work),
the center voxel is located at (80, 80, 80). ERF quantifies how much
each 𝐼𝑚(𝑖, 𝑗, 𝑘) contributes to the center voxel of the displacement
field, i.e. 𝐮(80, 80, 80). This is accomplished using the partial deriva-
tive 𝜕𝐮(80, 80, 80)∕𝜕𝐼𝑚(𝑖, 𝑗, 𝑘), which indicates the relative relevance of
𝐼𝑚(𝑖, 𝑗, 𝑘) to 𝐮(80, 80, 80). To obtain this partial derivative, we set the
error gradient to:

𝜕𝓁
𝜕𝐮(𝑖, 𝑗, 𝑘)

=

⎧

⎪

⎨

⎪

⎩

1, for (𝑖, 𝑗, 𝑘) = (80, 80, 80)
0, otherwise
,

(26)

where 𝓁 denotes an arbitrary loss function. Then this gradient is prop-
agated downward from 𝐮 to the input 𝐼𝑚, where the resulting gradient
of 𝐼𝑚 represents the desired partial derivative 𝜕𝐮(80, 80, 80)∕𝜕𝐼𝑚(𝑖, 𝑗, 𝑘).
This partial derivative is independent of the input and loss function and
is only a function of the network architecture and the index (𝑖, 𝑗, 𝑘),
which adequately describes the distribution of the effective receptive
field.
19
A comparison of the ERFs of VoxelMorph and TransMorph is
shown in Fig. 15. Note that the other ConvNet-based models were omit-
ted because they adopted a similar network architecture as Voxel-
Morph (e.g., CycleMorph and MIDIR). Due to the locality of convolu-
tion operations, VoxelMorph’s ERF at each stage (top row in Fig. 15)
was highly localized, particularly in the encoding stages (i.e., 1/4, 1/8,
and 1/16 resolution). Even at the end of the network, the theoretical
receptive field of VoxelMorph encompassed the entire image; yet,
its ERF emphasized only a small portion of the image. In contrast,
the ERFs of the proposed TransMorph were substantially larger than
those of VoxelMorph at each stage, and the ERFs in the decoding
stage covered the entire image (bottom row in Fig. 15). The ERFs reveal
that ConvNet-based architectures can only perceive a portion of the
input image, particularly during the encoding stages, indicating that
they cannot explicitly comprehend the spatial relationships between
distant voxels. For tasks that require large deformations, ConvNets may
fall short of establishing accurate voxel correspondences between the
moving and fixed images, which is essential for image registration.
On the other hand, TransMorph adopts substantially large kernels at
the encoding stages leading to substantially large ERFs throughout the
network thanks to the self-attention mechanism of the Transformer.

6.4. Comparison of displacement magnitudes

As demonstrated in Section 6.3, TransMorph had substantially
larger effective receptive fields than VoxelMorph, which might be
beneficial for capturing semantic information that is necessary for
coping with large deformations (Ha et al., 2020). In this section,
we provide more evidence that Transformer-based models are more
capable of producing larger deformations. We used 115 test volumes
from the IXI dataset to generate histograms of displacement magni-
tudes in millimeters. Fig. 17 shows histograms of the displacement
magnitudes for the various methods. The models that produced dense
displacement fields are shown for fair comparisons. Note that Vox-
elMorph and CylceMorph are ConvNet-based models, whereas the
other models are Transformer-based. All models were trained under
the identical setting (e.g., loss functions, number of epochs, optimizers,
etc.), where the only variable was the network architecture. As indi-
cated by the histograms, all Transformer-based models had much more
larger displacements than ConvNet-based models. The displacement
distributions of ConvNet-based models had a mode near 0 and had
more smaller displacements. We additionally showed the histograms of
VoxelMorph-huge and TransMorph-small, the former of which had
63.25M parameters and the latter of which had 11.76M parameters.
Despite having around 6× more parameters, VoxelMorph-huge still
exhibited smaller displacements than TransMorph-small. This further
indicates that the larger displacements produced by TransMorph
were not a consequence of an increase in the number of parameters
but rather the network architecture. Given the above-demonstrated

improved registration performance of the Transformer-based models,
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Fig. 17. Histograms of the displacement magnitudes in millimeters. These histograms were generated using 115 test volumes from the IXI dataset. The displacement magnitude
is computed as

√

𝑑2𝑥 + 𝑑2𝑦 + 𝑑2𝑧 , where 𝑑{𝑥,𝑦,𝑧} denotes the displacement in 𝑥, 𝑦, and 𝑧 directions. The median displacement magnitude is shown in the upper right corner of each
plot. To provide fair comparisons, only models that produce dense displacements are shown here. VoxelMorph and CycleMorph are ConvNet-based models, whereas the other
models are Transformer-based.
Fig. 18. Validation Dice scores for inter-patient brain MRI registration during training. The validation dataset comprises 104 image pairings that were not included in the training
or testing set.
these histograms indicate that in cases where larger displacements
are required, the Transformer-based models will likely provide better
registration.

6.5. Comparison of loss landscapes

In this section, the loss landscapes of TransMorph and ConvNet-
based models are compared. We adopted the loss landscape visualiza-
tion method described in Li et al. (2018), Goodfellow et al. (2014), Im
et al. (2016), in which a set of pre-trained model parameters (denoted
as 𝜃) are perturbed in two random directions (denoted as 𝛿 and 𝜂) with
step sizes of 𝛼 and 𝛽 to acquire loss values at different locations. The
loss landscape was plotted based on the function of the form:

𝑓 (𝛼, 𝛽) = (𝜃 + 𝛼𝛿 + 𝛽𝜂), (27)

where  denotes the loss function made up of LNCC and diffusion
regularizer. We averaged the loss landscapes of ten samples from the
validation set of the atlas-to-patient registration task to obtain the final
3D contour plot for each model. For comparison between ConvNet-
based models and TransMorph, the loss landscapes of VoxelMorph,
MIDIR, and TransMorph were created as shown in Fig. 16. Trans-
Morph produced a substantially flatter loss landscape than those of the
ConvNet-based models. This observation is consistent with the findings
given in Park and Kim (2022), which suggest that Transformers tend
20
to promote flatter loss landscapes. Many studies have demonstrated
that a flatter landscape results in improved performance and better
generalizability (Park and Kim, 2022; Keskar et al., 2016; Santurkar
et al., 2018; Foret et al., 2020; Li et al., 2018). The flatter landscape of
TransMorph further demonstrates the advantages of Transformer-based
models for image registration.

6.6. Convergence and speed

The left panel of Fig. 18 shows the validation dice scores of the
learning-based methods during training. In comparison to other meth-
ods, the proposed TransMorph achieved > 0.7 in Dice within the
first 20 epochs, showing that it learned the spatial correspondence
between image pairs quicker than the competing models. Notably,
TransMorph consistently outperformed the other Transformer-based
models while having a comparable number of parameters and compu-
tational complexity. This implied Swin Transformer architecture was
more effective than other Transformers, resulting in a performance
improvement for TransMorph. On average, Transformer-based mod-
els provided better validation scores than ConvNet-based models, with
the exception of CoTr, whose validation results were volatile during
training (as seen from the orange curve in Fig. 18). The performance
of CoTr may be limited by its architecture design, which substitutes
a Transformer for the skip connections and bottleneck of a U-shaped
CovnNet. As a result, it lacks the direct flow of features learned during
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Table 7
Average training and inference time for methods used in this work. Note that SyN,
iftyReg, and deedsBCV were applied using CPUs, while LDDMM and the learning-
ased methods were implemented on GPU. Inference time was averaged based on 40
epeated runs.
Model Training (min/epoch) Inference (sec/image)

SyN – 192.140
NiftyReg – 30.723
LDDMM – 66.829
deedsBCV – 31.857
VoxelMorph-1 8.75 0.380
VoxelMorph-2 9.40 0.430
VoxelMorph-diff 4.20 0.049
VoxelMorph-huge 28.50 1.107
CycleMorph 41.90 0.281
MIDIR 4.05 1.627
ViT-V-Net 9.20 0.197
PVT 13.80 0.209
CoTr 17.10 0.372
nnFormer 6.35 0.105

TransMorph-Bayes 22.60 7.739
TransMorph-diff 7.35 0.099
TransMorph-bspl 10.50 1.739
TransMorph 14.40 0.329

the encoding stage to the layers creating the registration, making it dif-
ficult to converge. The right panel of Fig. 18 shows the training curves
of the TransMorph variants and the customized VoxelMorph-huge.
As described in Im et al. (2016), Sutskever et al. (2013), Darken and
Moody (1991), the training curve of a deep learning model consists of
two phases: a ‘‘transient’’ phase followed by a ‘‘minimization’’ phase,
where the former identifies the neighborhood of local minima and the
latter seeks the local minima inside that neighborhood. As seen in the
figure, TransMorph variants had shorter ‘‘transient’’ phases than that
of VoxelMorph-huge, indicating that they identified the local min-
ima neighborhood more quickly. A fast convergent algorithm is often
preferred since it not only saves time but also computing resources
and costs. There have been many efforts to accelerate the convergence
rate of deep learning models (Darken and Moody, 1991; Looney, 1996;
Zeiler et al., 2013; Smith and Topin, 2019). TransMorph tends to
accelerate convergence rate compared to ConvNet-based models, which
promotes its potential of faster training using fewer epochs, saving time
and reducing the carbon footprint.

Table 7 compares the training time in min per epoch (min/epoch)
and inference time in seconds per image (sec/image) among the meth-
ods used in this paper. Note that SyN, NiftyReg, and deedsBCV
packages are all CPU-based, while LDDMM and the deep-learning-based
methods are all GPU-based. The speed was calculated using an in-
put image size of 160 × 192 × 224, which corresponds to the size
of the brain MRI scans. The training time per epoch was computed
based on 768 training image pairs. The most and second most time-
consuming methods to train are two ConvNet-based methods, Cy-
cleMorph and the customized VoxelMorph-huge, which required
approximately (41.90 min × 500)∕(60 min × 24 h) ≈ 15 days and
(28.50 min × 500)∕(60 min × 24 h) ≈ 10 days for 500 epochs of
training, respectively. CycleMorph was time-consuming because the
cycle-consistent training virtually trains four networks simultaneously
in a single epoch. Whereas the training of VoxelMorph-huge was
slowed down by the extensive convolution operations. The proposed
TransMorph has a moderate training speed, roughly 1.5× that of
VoxelMorph-2 and 0.5× that of the customized VoxelMorph-huge.
In terms of inference time, learning-based models undoubtedly oper-
ated orders of magnitudes faster than traditional registration methods.
Note that TransMorph is about 3× faster than VoxelMorph-huge
during inference. These findings are proportional to the calculated
computational complexity as shown in the barplot on the left in Fig. 10.
Among the learning-based models, TransMorph-Bayes required the
highest inference time. However, the time required is due to the
21
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sampling of 𝑇 = 25 images for a single prediction and uncertainty
estimation.

6.7. Limitations

There are some limitations to our work. First, rather than doing
extensive grid searches for optimal hyperparameters for the baseline
methods, the hyperparameters are either determined empirically or
based on the values suggested in the original paper. Due to the time
required to train some of the baseline methods and the limited mem-
ory available on the GPU, we were unable to afford the intensive
grid search. Moreover, because this study introduced a generic net-
work architecture for image registration, we concentrated on archi-
tectural comparison rather than on selecting optimal hyperparameters
for loss functions or complex training methods. However, the proposed
TransMorph architecture is readily adaptable using either the cycle-
consistent training method used by CycleMorph (Kim et al., 2021)
or the symmetric training method proposed in Mok and Chung (2020).
Additionally, the proposed network may be used in conjunction with
any registration loss function.

In the future, we will investigate alternative loss functions, such as
mutual information, in an effort to expand the potential of the proposed
method for multi-modal registration tasks.

7. Conclusion

In this paper, we introduced TransMorph, a novel model for
unsupervised deformable image registration. TransMorph is built on
Transformer, which is well-known for its capability to establish long-
range spatial correspondence between image voxels, making Trans-
Morph a strong candidate for image registration tasks.

Two variants of TransMorph are proposed, which provide
topology-preserved deformations. Additionally, we introduced Bayesian
deep learning to the Transformer encoder of TransMorph, enabling
deformation uncertainty estimation without degrading registration per-
formance.

We evaluated TransMorph on the task of inter-patient brain MR
registration and a novel task of phantom-to-CT registration. The results
revealed that TransMorph achieved superior registration accuracy
than various traditional and learning-based methods, demonstrating its
effectiveness for medical image registration.
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Appendix A. Affine network architecture

See Fig. A.19.

Fig. A.19. Visualization of the proposed Swin-Transformer-based affine network. This network outputs three rotation, three translation, three scaling, and three shearing parameters
for rigid registration. The embedding dimension 𝐶 in the network was set to 12.

Appendix B. Miscalibration in predictive variance

The expected model error (characterized by MSE) is defined as:

𝑒𝑟𝑟(𝐼𝑚◦𝜙) = E
[

(𝐼𝑚◦𝜙 − 𝐼𝑓 )2
]

= 1
𝑇

𝑇
∑

𝑡=1

(

𝐼𝑚◦𝜙𝑡 − 𝐼𝑓
)2 , (B.1)

where 𝑡 represents the 𝑡𝑡ℎ sample from a total number of 𝑇 samples. We denote 𝐼𝑑 = 𝐼𝑚◦𝜙 for convenience, and it can be shown that:

E
[

(𝐼𝑑 − 𝐼𝑓 )2
]

= E
[

(𝐼𝑑 − E[𝐼𝑑 ] + E[𝐼𝑑 ] − 𝐼𝑓 )2
]

= E
[

(

𝐼𝑑 − E[𝐼𝑑 ]
)2
]

+
(

E[𝐼𝑑 ] − 𝐼𝑓
)2 + 2(E[𝐼𝑑 ] − 𝐼𝑓 )E

[

𝐼𝑑

−E[𝐼𝑑 ]
]

= E
[

(

𝐼𝑑 − E[𝐼𝑑 ]
)2
]

+
(

E[𝐼𝑑 ] − 𝐼𝑓
)2 .

(B.2)

Therefore,

𝑒𝑟𝑟(𝐼𝑚◦𝜙) =
1
𝑇

𝑇
∑

𝑡=1

(

𝐼𝑚◦𝜙𝑡 − 𝐼𝑓
)2

= 1
𝑇

𝑇
∑

𝑡=1

(

𝐼𝑚◦𝜙𝑡 −
1
𝑇

𝑇
∑

𝑡=1
𝐼𝑚◦𝜙𝑡

)2

+

(

1
𝑇

𝑇
∑

𝑡=1
𝐼𝑚◦𝜙𝑡 − 𝐼𝑓

)2

= 𝛴̂2
𝑓 +

(

𝐼𝑓 − 𝐼𝑓
)2 ,

(B.3)

where 𝐼𝑓 −𝐼𝑓 is referred to as the bias between the predictive mean 𝐼𝑓 and the target image 𝐼𝑓 . Due to the problem of overfitting the training set in
supervised algorithms (e.g., deep learning) (Bishop, 2006), this bias may be less noticeable on training dataset but more noticeable on test images,
which is a phenomenon referred to as the bias–variance tradeoff (Friedman, 2017). As a consequence, the predictive variance 𝛴̂2

𝑓 is systematically
smaller than the expected error 𝑒𝑟𝑟(𝐼𝑚◦𝜙), resulting in miscalibrated uncertainty estimations.

Appendix C. Additional results for inter-patient brain MRI registration

See Figs. C.20–C.22.
22



Medical Image Analysis 82 (2022) 102615J. Chen et al.
Fig. C.20. Additional qualitative comparison of various registration methods on the inter-patient brain MR registration task. The first row shows the deformed moving images,
the second row shows the deformation fields, and the last row shows the deformed grids. The spatial dimension 𝑥, 𝑦, and 𝑧 in the displacement field is mapped to each of the
RGB color channels, respectively. The [𝑝, 𝑞] in color bars denotes the magnitude range of the fields.
23
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Fig. C.21. Quantitative comparison of the various registration methods on the inter-patient brain MR registration task. Boxplots showing Dice scores for different brain MR
substructures using the proposed TransMorph and existing image registration methods.

Fig. C.22. Quantitative comparison of the Transformer-based models on the inter-patient brain MR registration task. Boxplots showing Dice scores for different brain MR
substructures using the proposed TransMorph, the variants of TransMorph, and other Transformer architectures.
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Appendix D. Additional results for atlas-to-patient brain MRI registration

See Figs. D.23–D.25.

Fig. D.23. Additional qualitative comparison of various registration methods on the atlas-to-patient brain MR registration task. The first row shows the deformed moving images,
the second row shows the deformation fields, and the last row shows the deformed grids. The spatial dimension 𝑥, 𝑦, and 𝑧 in the displacement field is mapped to each of the
RGB color channels, respectively. The [𝑝, 𝑞] in color bars denotes the magnitude range of the fields.
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Fig. D.24. Quantitative comparison of the various registration methods on the atlas-to-patient brain MR registration task. Boxplots showing Dice scores for different brain MR
substructures using the proposed TransMorph and existing image registration methods.

Fig. D.25. Quantitative comparison of the Transformer-based models on the atlas-to-patient brain MR registration task. Boxplots showing Dice scores for different brain MR
substructures using the proposed TransMorph, the variants of TransMorph, and other Transformer architectures.
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Appendix E. Additional results for XCAT-to-CT registration

See Figs. E.26–E.29.

Fig. E.26. Additional qualitative comparison of various registration methods on the XCAT-to-CT registration task. The first row shows the deformed moving images, the second
row shows the deformation fields, and the last row shows the deformed grids. The spatial dimension 𝑥, 𝑦, and 𝑧 in the displacement field is mapped to each of the RGB color
channels, respectively. The [𝑝, 𝑞] in color bars denotes the magnitude range of the fields.
27
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Fig. E.27. Additional coronal slices of the deformed XCAT phantom generated by various registration methods.
28
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Fig. E.28. Quantitative comparison of various registration methods on the XCAT-to-CT registration task. Boxplots showing Dice scores for different organs in CT obtained using
the proposed TransMorph and existing image registration methods.

Fig. E.29. Quantitative comparison of the Transformer-based models on the XCAT-to-CT registration task. Boxplots showing Dice scores for different organs in CT obtained using
the proposed TransMorph, the variants of TransMorph, and other Transformer architectures.

Appendix F. Additional qualitative results for uncertainty quantification

See Fig. F.30.
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Fig. F.30. Qualitative results and registration uncertainty estimate with TransMorph-Bayes. The fourth and the fifth columns exhibit the appearance uncertainties estimated
using the proposed uncertainty estimation scheme (i.e., 𝛴2

𝑓 ). The last and the second to last columns shows the transformation uncertainties, i.e., 𝛴̂2
𝜙, where the uncertainty maps

were taken as square root of the sum of the variances of the deformation in 𝑥, 𝑦, and 𝑧 direction. The spatial dimension 𝑥, 𝑦, and 𝑧 in the displacement field is mapped to each
of the RGB color channels, respectively. The [𝑝, 𝑞] in color bars denotes the magnitude range of the fields.
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Appendix G. Visualization of feature maps in skip connections

See Fig. G.31.

Fig. G.31. Feature maps in TransMorph’s skip connections. (a) and (b) exhibit, respectively, the feature maps in the first and second skip connections from the convolutional
layers in the encoder (i.e., the green arrows in Fig. 1); (c)–(f) exhibit the feature maps in the skip connections from the Transformer blocks (i.e., the orange arrows in Fig. 1).

Appendix H. Probabilistic diffeomorphic registration

As shown in Section 3.3, we introduced a variational inference
framework to the proposed TransMorph (which we denote as
TransMorph-diff). A prior distribution

𝑝(𝐮) =  (𝐮; 𝟎,Σ𝐮) (H.1)

was placed over the dense displacement field 𝐮, where 𝟎 and Σ𝐮 are
the mean and covariance of the multivariate Gaussian distribution. We
followed Dalca et al. (2019) and defined Σ−1

𝐮 = 𝛬𝐮 = 𝜆𝐋, where 𝛬𝐮
denotes the precision matrix, 𝜆 controls the scale of 𝐮, 𝐋 = 𝐃−𝐀 is the
Laplacian matrix of a neighborhood graph formed on the voxel grid, 𝐃
is the graph degree matrix, and 𝐀 is a voxel neighborhood adjacency
matrix. The probability 𝑝(𝐼𝑓 |𝐼𝑚) can be computed using the law of total
probability:

𝑝(𝐼𝑓 |𝐼𝑚) = ∫𝐮
𝑝(𝐼𝑓 |𝐮, 𝐼𝑚)𝑝(𝐮)𝑑𝐮. (H.2)

The likelihood 𝑝(𝐼𝑓 |𝐮, 𝐼𝑚) was also assumed to be Gaussian

𝑝(𝐼𝑓 |𝐮, 𝐼𝑚) =  (𝐼𝑓 ; 𝐼𝑚◦𝜙𝐮, 𝜎
2
𝐈 I), (H.3)

where 𝜎2𝐈 captures the variance of the image noise, and 𝜙𝐮 is the group
exponential of the time-stationary velocity field 𝐮, i.e. 𝜙 = exp(𝐮), and
was computed using a scaling-and-squaring approach (Section 2.1.2).

Our goal is to estimate the posterior probability 𝑝(𝐮|𝐼𝑓 , 𝐼𝑚). Due to
the intractable nature of the integral over 𝐮 in Eq. (H.2), 𝑝(𝐼𝑓 |𝐼𝑚) is

usually calculated using just the 𝐮’s that are most likely to have gener-
ated 𝐼𝑓 (Krebs et al., 2019). Since computing the posterior 𝑝(𝐮|𝐼𝑓 , 𝐼𝑚)
analytically is also intractable, we instead assumed a variational pos-
terior 𝑞𝜓 (𝐮|𝐼𝑓 , 𝐼𝑚) learned by the network with parameters 𝜓 . The
Kullback–Leibler divergence (KL) was used to relate the variational
posterior to the actual posterior, which results in the evidence lower
limit (ELBO) (Kingma and Welling, 2013):

log𝑝(𝐼𝑓 |𝐼𝑚) − KL
[

𝑞𝜓 (𝐮|𝐼𝑓 , 𝐼𝑚)||𝑝(𝐮|𝐼𝑓 , 𝐼𝑚)
]

=

E𝐮∼𝑞𝜓
[

log 𝑝(𝐼𝑓 |𝐮, 𝐼𝑚)
]

− KL
[

𝑞𝜓 (𝐮|𝐼𝑓 , 𝐼𝑚)||𝑝(𝐮)
]

,
(H.4)

where the KL-divergence on the left hand side vanishes if the varia-
tional posterior is identical to the actual posterior. Therefore, maxi-
mizing log 𝑝(𝐼𝑓 |𝐼𝑚) is equivalent to minimizing the negative of ELBO
on the right hand side of Eq. (H.4). Since the prior distribution 𝑝(𝐮)
was assumed to be a multivariate Gaussian, the variational posterior is
likewise a multivariate Gaussian, defined as:

𝑞𝜓 (𝐮|𝐼𝑓 , 𝐼𝑚) =  (𝐮;𝝁𝜓 (𝐮|𝐼𝑓 , 𝐼𝑚),Σ𝜓 (𝐮|𝐼𝑓 , 𝐼𝑚)), (H.5)

where 𝝁𝜓 and Σ𝜓 are the voxel-wise mean and variance generated
by the network with parameters 𝜓 . In each forward pass, the dense
displacement field 𝐮 is sampled using reparameterization 𝐮 = 𝝁𝜓+Σ𝜓⊙
𝝐 with 𝝐 ∼  (𝟎, 𝐈). The variational parameters 𝝁 and Σ are learned
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by minimizing the loss (Dalca et al., 2019):

𝑝𝑟𝑜𝑏.(𝐼𝑓 , 𝐼𝑚, 𝜙𝐮;𝜓)

= −E𝐮∼𝑞𝜓
[

log 𝑝(𝐼𝑓 |𝐮, 𝐼𝑚)
]

+ KL
[

𝑞𝜓 (𝐮|𝐼𝑓 , 𝐼𝑚)||𝑝(𝐮)
]

= 1
2𝜎2

‖𝐼𝑓 − 𝐼𝑚◦𝜙𝐮‖
2 + 1

2

[

tr(𝜆𝐃Σ𝜓 − logΣ𝜓 ) + 𝝁⊤𝜓𝛬𝐮𝝁𝜓

]

,

(H.6)

where 𝝁⊤𝜓𝛬𝐮𝝁𝜓 can be thought of as a diffusion regularization
(Eq. (14)) placed over the mean displacement field 𝝁𝜓 , that is
𝝁⊤𝜓𝛬𝐮𝝁𝜓 = 𝜆

2
∑

𝐩
∑

𝑖∈𝑁(𝐩)
(𝝁(𝐩) − 𝝁(𝑖))2, where 𝑁(𝐩) represents the

neighboring voxels of the 𝐩𝑡ℎ voxel.
As discussed in Section 3.2.2, when the auxiliary segmentation

information is available (i.e., the label maps of 𝐼𝑓 and 𝐼𝑚, denoted
as 𝑠𝑓 and 𝑠𝑚), Dice loss can be used for training the network to
further enhance registration performance. Dice loss, however, does not
preserve a Gaussian approximation of the deformation fields. Instead,
we follow Dalca et al. (2019) and replace the KL divergence in Eq. (H.4)
with:

KL
[

𝑞𝜓 (𝐮|𝐼𝑓 , 𝐼𝑚)||𝑝(𝐮|𝐼𝑓 , 𝑠𝑓 ; 𝐼𝑚, 𝑠𝑚)
]

, (H.7)

which yields a loss function of the form:

𝑝𝑟𝑜𝑏. 𝑤∕ 𝑎𝑢𝑥.(𝐼𝑓 , 𝑠𝑓 , 𝐼𝑚, 𝑠𝑚, 𝜙𝐮;𝜓)

= 1
2𝜎2

‖𝐼𝑓 − 𝐼𝑚◦𝜙𝐮‖
2 + 1

2𝜎2𝑠
‖𝑠𝑓 − 𝑠𝑚◦𝜙𝐮‖

2

+ 1
2

[

tr(𝜆𝐃Σ𝜓 − logΣ𝜓 ) + 𝝁⊤𝜓𝛬𝐮𝝁𝜓

]

.

(H.8)

n Dalca et al. (2019), 𝑠𝑓 and 𝑠𝑚 represent anatomical surfaces obtained
from label maps. In contrast, we directly used the label maps as 𝑠𝑓 and
𝑚 in this work. They were image volumes with multiple channels, each
hannel contained a binary mask defining the segmentation of a certain
tructure/organ.

ppendix I. B-splines diffeomorphic registration

As demonstrated in Section 3.3, we incorporated a cubic B-
pline model (Qiu et al., 2021) into TransMorph (which we denote
s TransMorph-bspl). This network produces a lattice of low-
imensional control points instead of producing a dense displacement
ield at the original resolution, which might be computationally costly.
s shown in Fig. 6, we denote the displacements of the B-spline control
oints generated by the network as 𝐮𝐵 and the spacing between the
ontrol points as 𝜹. Then, a weighted combination of cubic B-spline
asis functions (i.e., 𝛽𝑑) (Rueckert et al., 1999) is used to generate the
ense displacement field (i.e., the B-spline tensor product in Fig. 6):

̂ (𝐩) =
∑

𝐜∈𝐶
𝐮𝐵(𝐜)

∏

𝑑∈{𝑥,𝑦,𝑧}
𝛽𝑑 (𝐩𝑑 − 𝑘(𝐜𝑑 )), (I.1)

here 𝐜 is the index of the control points on the lattice 𝐶, and 𝑘
enotes the coordinates of the control points 𝐮𝐵(𝐜) in image space. Then
he final time-stationary displacement 𝐮 is obtained using the same
caling-and-squaring approach described in Section 2.1.2.
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